在农业中使用二次冶金炉渣作为土壤改良剂:意大利对其应用的认可

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi
{"title":"在农业中使用二次冶金炉渣作为土壤改良剂:意大利对其应用的认可","authors":"Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi","doi":"10.1002/srin.202400310","DOIUrl":null,"url":null,"abstract":"Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg<jats:sup>−1</jats:sup>/mg kg<jats:sup>−1</jats:sup>) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy\",\"authors\":\"Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi\",\"doi\":\"10.1002/srin.202400310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg<jats:sup>−1</jats:sup>/mg kg<jats:sup>−1</jats:sup>) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/srin.202400310\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400310","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在炼钢渣中,二次冶金渣(SMS)是最难回收利用的。长期以来,人们已多次尝试回收此类炉渣作为石灰替代品、炉渣助熔剂和水青石材料,但各有利弊。然而,可回收炉渣的数量有限,而且与传统材料相比,使用这些材料往往需要更多的能源。然而,人们很少或从未考虑过在农业中使用 SMS。本文对 SMS 作为肥料生产原料的法律和技术评估进行了研究。通过对技术规范、有毒金属浓度和浸出行为的合规性分析,确认了将 SMS 用作肥料生产原料的技术可行性。从文献数据和 16 个 SMS 工业样品的实验结果来看,完全符合钙镁硫肥、土壤改良剂和农业污水污泥消毒的要求。SMS 中的氧化钙浓度(35-60 wt%)远远高于要求(≥15 wt%),氧化钙大部分以水溶性复合物的形式存在,如铝酸钙(70 wt%)、硅酸盐(10 wt%)和硫化物(4 wt%)。SMS 样品渗滤液的 pH 值与新鲜石灰的 pH 值相当(12.35 对 12.46),与石灰石的 pH 值(9.98)相比,污水污泥的卫生性能更好。对于石灰材料来说,所测得的有毒金属和渗滤液元素浓度超过相应的容许阈值总是低于 0.5 和 1.0(毫克千克-1/毫克千克-1)。最后,根据这些结果,意大利肥料法规正式批准使用 SMS 作为土壤改良剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy
Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg−1/mg kg−1) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信