{"title":"上浆剂控制熔融纺丝聚丙烯腈基碳纤维的高聚焦性和铺展性及其界面剪切强度","authors":"MoonHeui Han, WangGeun Song, Doo-Won Kim","doi":"10.1007/s42823-024-00798-y","DOIUrl":null,"url":null,"abstract":"<p>The surface treatment processes of carbon fibers is very important, because of their significant impact on fiber handling, filament protection, and interfacial properties. In this study, the effects of two different sizing agents with different molecular weights, with or without a nonionic surfactant, on the performance of a melt-spun polyacrylonitrile-based carbon fiber and carbon fiber/epoxy interfacial adhesion are investigated. The focusing property and spread-ability of a low-molecular-weight sizing agent with a surfactant show outstanding performances because of the high penetration between the fibers and high interfacial bonding with the fibers. In addition, wettability of the matrix (epoxy resin) of the low-molecular-weight sizing agent are superior to those of the high-molecular-weight sizing agent. Furthermore, the nonionic surfactant used as an assistant improves the sizing amount and wettability by forming micelles with the epoxy. The interfacial shear strength (IFSS) of the low-molecular-weight sizing agent with a surfactant is also superior to that of other sizing agents. The IFSS is closely related to the sizing amount of the coating on the carbon fiber surface and matrix wettability.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"96 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sizing-agent control of the high-focusing and spread-ability of a melt-spun polyacrylonitrile-based carbon fiber and its interfacial shear strength\",\"authors\":\"MoonHeui Han, WangGeun Song, Doo-Won Kim\",\"doi\":\"10.1007/s42823-024-00798-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The surface treatment processes of carbon fibers is very important, because of their significant impact on fiber handling, filament protection, and interfacial properties. In this study, the effects of two different sizing agents with different molecular weights, with or without a nonionic surfactant, on the performance of a melt-spun polyacrylonitrile-based carbon fiber and carbon fiber/epoxy interfacial adhesion are investigated. The focusing property and spread-ability of a low-molecular-weight sizing agent with a surfactant show outstanding performances because of the high penetration between the fibers and high interfacial bonding with the fibers. In addition, wettability of the matrix (epoxy resin) of the low-molecular-weight sizing agent are superior to those of the high-molecular-weight sizing agent. Furthermore, the nonionic surfactant used as an assistant improves the sizing amount and wettability by forming micelles with the epoxy. The interfacial shear strength (IFSS) of the low-molecular-weight sizing agent with a surfactant is also superior to that of other sizing agents. The IFSS is closely related to the sizing amount of the coating on the carbon fiber surface and matrix wettability.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42823-024-00798-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00798-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sizing-agent control of the high-focusing and spread-ability of a melt-spun polyacrylonitrile-based carbon fiber and its interfacial shear strength
The surface treatment processes of carbon fibers is very important, because of their significant impact on fiber handling, filament protection, and interfacial properties. In this study, the effects of two different sizing agents with different molecular weights, with or without a nonionic surfactant, on the performance of a melt-spun polyacrylonitrile-based carbon fiber and carbon fiber/epoxy interfacial adhesion are investigated. The focusing property and spread-ability of a low-molecular-weight sizing agent with a surfactant show outstanding performances because of the high penetration between the fibers and high interfacial bonding with the fibers. In addition, wettability of the matrix (epoxy resin) of the low-molecular-weight sizing agent are superior to those of the high-molecular-weight sizing agent. Furthermore, the nonionic surfactant used as an assistant improves the sizing amount and wettability by forming micelles with the epoxy. The interfacial shear strength (IFSS) of the low-molecular-weight sizing agent with a surfactant is also superior to that of other sizing agents. The IFSS is closely related to the sizing amount of the coating on the carbon fiber surface and matrix wettability.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.