Francesco Liberati;Manuel Donsante;Andrea Tortorelli
{"title":"自动驾驶汽车出现时的单路口 MPC 交通信号控制","authors":"Francesco Liberati;Manuel Donsante;Andrea Tortorelli","doi":"10.1109/TCST.2024.3449188","DOIUrl":null,"url":null,"abstract":"This article presents a model predictive control (MPC) approach for the management of traffic lights (TLs) at a single road intersection. The proposed controller incorporates a microscopic traffic model, capturing the position, velocity, and acceleration of every single vehicle at the intersection. This allows us to achieve a detailed modeling of the dynamics of the queues. The proposed controller can adapt to work in scenarios that go from one in which vehicles are manually controlled by the drivers, to one in which some or all of the vehicles are automatically driven. In the former scenario, the dynamics of the vehicles’ variables are intended to mimic the drivers’ behavior, in the latter ones (i.e., semi or fully autonomous driving), vehicles’ variables are references to the automated vehicles, sent by the TL controller. Numerical simulations on a real intersection with realistic traffic characteristics are discussed and results in the scenarios from the manual one to the fully automated one are compared, evaluating the performance in terms of queue length and waiting times. It is shown how the proposed controller can significantly improve the management of the intersection, leading to less traffic.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 4","pages":"1432-1446"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Intersection MPC Traffic Signal Control in Presence of Automated Vehicles\",\"authors\":\"Francesco Liberati;Manuel Donsante;Andrea Tortorelli\",\"doi\":\"10.1109/TCST.2024.3449188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a model predictive control (MPC) approach for the management of traffic lights (TLs) at a single road intersection. The proposed controller incorporates a microscopic traffic model, capturing the position, velocity, and acceleration of every single vehicle at the intersection. This allows us to achieve a detailed modeling of the dynamics of the queues. The proposed controller can adapt to work in scenarios that go from one in which vehicles are manually controlled by the drivers, to one in which some or all of the vehicles are automatically driven. In the former scenario, the dynamics of the vehicles’ variables are intended to mimic the drivers’ behavior, in the latter ones (i.e., semi or fully autonomous driving), vehicles’ variables are references to the automated vehicles, sent by the TL controller. Numerical simulations on a real intersection with realistic traffic characteristics are discussed and results in the scenarios from the manual one to the fully automated one are compared, evaluating the performance in terms of queue length and waiting times. It is shown how the proposed controller can significantly improve the management of the intersection, leading to less traffic.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 4\",\"pages\":\"1432-1446\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666731/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666731/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Single Intersection MPC Traffic Signal Control in Presence of Automated Vehicles
This article presents a model predictive control (MPC) approach for the management of traffic lights (TLs) at a single road intersection. The proposed controller incorporates a microscopic traffic model, capturing the position, velocity, and acceleration of every single vehicle at the intersection. This allows us to achieve a detailed modeling of the dynamics of the queues. The proposed controller can adapt to work in scenarios that go from one in which vehicles are manually controlled by the drivers, to one in which some or all of the vehicles are automatically driven. In the former scenario, the dynamics of the vehicles’ variables are intended to mimic the drivers’ behavior, in the latter ones (i.e., semi or fully autonomous driving), vehicles’ variables are references to the automated vehicles, sent by the TL controller. Numerical simulations on a real intersection with realistic traffic characteristics are discussed and results in the scenarios from the manual one to the fully automated one are compared, evaluating the performance in terms of queue length and waiting times. It is shown how the proposed controller can significantly improve the management of the intersection, leading to less traffic.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.