Cuilian Sun, Xiujing Xing, Jin Li, Wei Xiong, Hao Li
{"title":"电催化硝酸盐还原成氨的碳基催化剂的最新进展","authors":"Cuilian Sun, Xiujing Xing, Jin Li, Wei Xiong, Hao Li","doi":"10.1007/s42823-024-00790-6","DOIUrl":null,"url":null,"abstract":"<p>The damage caused by water pollution has seriously affected human health, in which nitrate is difficult to remove effectively because of its stability and solubility in the water environment. Among the various technologies for nitrate removal, electrocatalytic conversion of nitrate to ammonia is one of the best choice because of its green and efficient nature as well as its ability to “turn waste into treasure”. In recent years, the development of high-performance electrocatalysts to promote the activity of electrocatalytic nitrate reduction (NO<sub>3</sub>RR) has received extensive attention from researchers. Among various electrocatalytic materials for NO<sub>3</sub>RR, carbon-based catalysts have become a promising electrocatalyst due to the advantages of affordable price, controllable structure, excellent stability and exceptional reactivity. Focusing on the carbon-based materials, this review summarizes the research progress of carbon-based catalysts for NO<sub>3</sub>RR in recent years, including heteroatom-doped carbon-based catalysts as well as metal and metal oxide-loaded or modified carbon-based catalysts. Opinions on the current challenges and future research directions of carbon-based catalysts for NO<sub>3</sub>RR are also presented. This review hopes to provide some references and principles for the design and preparation of carbon-based catalysts for high-performanceNO<sub>3</sub>RR process.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"67 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in carbon-based catalysts for electrocatalytic nitrate reduction to ammonia\",\"authors\":\"Cuilian Sun, Xiujing Xing, Jin Li, Wei Xiong, Hao Li\",\"doi\":\"10.1007/s42823-024-00790-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The damage caused by water pollution has seriously affected human health, in which nitrate is difficult to remove effectively because of its stability and solubility in the water environment. Among the various technologies for nitrate removal, electrocatalytic conversion of nitrate to ammonia is one of the best choice because of its green and efficient nature as well as its ability to “turn waste into treasure”. In recent years, the development of high-performance electrocatalysts to promote the activity of electrocatalytic nitrate reduction (NO<sub>3</sub>RR) has received extensive attention from researchers. Among various electrocatalytic materials for NO<sub>3</sub>RR, carbon-based catalysts have become a promising electrocatalyst due to the advantages of affordable price, controllable structure, excellent stability and exceptional reactivity. Focusing on the carbon-based materials, this review summarizes the research progress of carbon-based catalysts for NO<sub>3</sub>RR in recent years, including heteroatom-doped carbon-based catalysts as well as metal and metal oxide-loaded or modified carbon-based catalysts. Opinions on the current challenges and future research directions of carbon-based catalysts for NO<sub>3</sub>RR are also presented. This review hopes to provide some references and principles for the design and preparation of carbon-based catalysts for high-performanceNO<sub>3</sub>RR process.</p>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42823-024-00790-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00790-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advances in carbon-based catalysts for electrocatalytic nitrate reduction to ammonia
The damage caused by water pollution has seriously affected human health, in which nitrate is difficult to remove effectively because of its stability and solubility in the water environment. Among the various technologies for nitrate removal, electrocatalytic conversion of nitrate to ammonia is one of the best choice because of its green and efficient nature as well as its ability to “turn waste into treasure”. In recent years, the development of high-performance electrocatalysts to promote the activity of electrocatalytic nitrate reduction (NO3RR) has received extensive attention from researchers. Among various electrocatalytic materials for NO3RR, carbon-based catalysts have become a promising electrocatalyst due to the advantages of affordable price, controllable structure, excellent stability and exceptional reactivity. Focusing on the carbon-based materials, this review summarizes the research progress of carbon-based catalysts for NO3RR in recent years, including heteroatom-doped carbon-based catalysts as well as metal and metal oxide-loaded or modified carbon-based catalysts. Opinions on the current challenges and future research directions of carbon-based catalysts for NO3RR are also presented. This review hopes to provide some references and principles for the design and preparation of carbon-based catalysts for high-performanceNO3RR process.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.