Dipali P. Upare, Chul Wee Lee, Don Keun Lee, Young Soo Kang
{"title":"低密度聚乙烯非氧化热分解过程中固体酸催化剂酸度的影响","authors":"Dipali P. Upare, Chul Wee Lee, Don Keun Lee, Young Soo Kang","doi":"10.1007/s42823-024-00789-z","DOIUrl":null,"url":null,"abstract":"<p>Thermal decomposition of low-density polyethylene (LDPE) was monitored by thermogravimetry under N<sub>2</sub> atmosphere in the presence of solid acid catalysts such as alumina (α-Al<sub>2</sub>O<sub>3</sub>, γ-Al<sub>2</sub>O<sub>3</sub>), crystalline silica-alumina (SA, molar ratio of Si/Al = 0.19) and amorphous silica-alumina catalysts (ASA, molar ratio of Si/Al = 4.9). Crystal structure and surface area of solid acid catalysts were measured by XRD and BET, respectively. The strength and distribution of acid sites of solid acid catalysts were estimated by NH<sub>3</sub>-TPD. It was observed that total acidity strength is in the order of ASA (1.77 μmmol NH<sub>3</sub>/g) > AS (1.42 μmol NH<sub>3</sub>/g) > γ-Al<sub>2</sub>O<sub>3</sub> (1.06 μmol NH<sub>3</sub>/g) > α-Al<sub>2</sub>O<sub>3</sub> (0.06 μmol NH<sub>3</sub>/g). Thermal degradation behavior of LDPE with and without solid acid catalyst was monitored by TGA, where heating rates (β) of 5, 10, and 20 °C/min were employed under an inert atmosphere, and their activation energies (E<sub>a</sub>), onset temperatures (T<sub>initial</sub>), decomposition temperatures (T<sub>decomp</sub>) were calculated and compared. The activation energy (E<sub>a</sub>) was evaluated using the Coats-Redfern method. Solid acid catalysts with stronger acidity and higher surface area showed a decrease in activation energy and onset temperature. Activation energy of LDPE over ASA catalyst is decreased to 97.3 kJ/mol from thermal decomposition of LDPE without catalyst of 117.2 kJ/mol under heating rate of 10 °C/min. The isothermal decomposition of LDPE was monitored at 300 °C for 3 h with a heating rate of 10 °C/min, where 13.1% and 24.2% wt. loss were observed over SA and ASA, respectively, while only 0.7% wt. loss was observed for LDPE without a solid acid catalyst.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>Single step decomposition of LDPE</p><p>Thermal degradation behavior of LDPE monitored by TGA, with different heating rates (β) of 5, 10, 20 °C/min.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"18 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of acidity of solid acid catalysts during non-oxidative thermal decomposition of LDPE\",\"authors\":\"Dipali P. Upare, Chul Wee Lee, Don Keun Lee, Young Soo Kang\",\"doi\":\"10.1007/s42823-024-00789-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermal decomposition of low-density polyethylene (LDPE) was monitored by thermogravimetry under N<sub>2</sub> atmosphere in the presence of solid acid catalysts such as alumina (α-Al<sub>2</sub>O<sub>3</sub>, γ-Al<sub>2</sub>O<sub>3</sub>), crystalline silica-alumina (SA, molar ratio of Si/Al = 0.19) and amorphous silica-alumina catalysts (ASA, molar ratio of Si/Al = 4.9). Crystal structure and surface area of solid acid catalysts were measured by XRD and BET, respectively. The strength and distribution of acid sites of solid acid catalysts were estimated by NH<sub>3</sub>-TPD. It was observed that total acidity strength is in the order of ASA (1.77 μmmol NH<sub>3</sub>/g) > AS (1.42 μmol NH<sub>3</sub>/g) > γ-Al<sub>2</sub>O<sub>3</sub> (1.06 μmol NH<sub>3</sub>/g) > α-Al<sub>2</sub>O<sub>3</sub> (0.06 μmol NH<sub>3</sub>/g). Thermal degradation behavior of LDPE with and without solid acid catalyst was monitored by TGA, where heating rates (β) of 5, 10, and 20 °C/min were employed under an inert atmosphere, and their activation energies (E<sub>a</sub>), onset temperatures (T<sub>initial</sub>), decomposition temperatures (T<sub>decomp</sub>) were calculated and compared. The activation energy (E<sub>a</sub>) was evaluated using the Coats-Redfern method. Solid acid catalysts with stronger acidity and higher surface area showed a decrease in activation energy and onset temperature. Activation energy of LDPE over ASA catalyst is decreased to 97.3 kJ/mol from thermal decomposition of LDPE without catalyst of 117.2 kJ/mol under heating rate of 10 °C/min. The isothermal decomposition of LDPE was monitored at 300 °C for 3 h with a heating rate of 10 °C/min, where 13.1% and 24.2% wt. loss were observed over SA and ASA, respectively, while only 0.7% wt. loss was observed for LDPE without a solid acid catalyst.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3><p>Single step decomposition of LDPE</p><p>Thermal degradation behavior of LDPE monitored by TGA, with different heating rates (β) of 5, 10, 20 °C/min.</p>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42823-024-00789-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00789-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of acidity of solid acid catalysts during non-oxidative thermal decomposition of LDPE
Thermal decomposition of low-density polyethylene (LDPE) was monitored by thermogravimetry under N2 atmosphere in the presence of solid acid catalysts such as alumina (α-Al2O3, γ-Al2O3), crystalline silica-alumina (SA, molar ratio of Si/Al = 0.19) and amorphous silica-alumina catalysts (ASA, molar ratio of Si/Al = 4.9). Crystal structure and surface area of solid acid catalysts were measured by XRD and BET, respectively. The strength and distribution of acid sites of solid acid catalysts were estimated by NH3-TPD. It was observed that total acidity strength is in the order of ASA (1.77 μmmol NH3/g) > AS (1.42 μmol NH3/g) > γ-Al2O3 (1.06 μmol NH3/g) > α-Al2O3 (0.06 μmol NH3/g). Thermal degradation behavior of LDPE with and without solid acid catalyst was monitored by TGA, where heating rates (β) of 5, 10, and 20 °C/min were employed under an inert atmosphere, and their activation energies (Ea), onset temperatures (Tinitial), decomposition temperatures (Tdecomp) were calculated and compared. The activation energy (Ea) was evaluated using the Coats-Redfern method. Solid acid catalysts with stronger acidity and higher surface area showed a decrease in activation energy and onset temperature. Activation energy of LDPE over ASA catalyst is decreased to 97.3 kJ/mol from thermal decomposition of LDPE without catalyst of 117.2 kJ/mol under heating rate of 10 °C/min. The isothermal decomposition of LDPE was monitored at 300 °C for 3 h with a heating rate of 10 °C/min, where 13.1% and 24.2% wt. loss were observed over SA and ASA, respectively, while only 0.7% wt. loss was observed for LDPE without a solid acid catalyst.
Graphical abstract
Single step decomposition of LDPE
Thermal degradation behavior of LDPE monitored by TGA, with different heating rates (β) of 5, 10, 20 °C/min.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.