Gyun Young Yoo, Ki Hoon Kim, Yong Chae Jung, Hunsu Lee, Seong Yun Kim
{"title":"基于离析纳米碳网络的聚合物复合材料的各向异性增强热导率","authors":"Gyun Young Yoo, Ki Hoon Kim, Yong Chae Jung, Hunsu Lee, Seong Yun Kim","doi":"10.1007/s42823-024-00799-x","DOIUrl":null,"url":null,"abstract":"<p>Segregated composites, where fillers are selectively placed at the matrix interface to form a segregated filler network, are attracting attention because they can provide excellent conductive properties at low filler content. In this study, the anisotropic enhancement in thermal conductivity of composites was discovered due to the unique structure of the segregated network. The segregated composites were produced using a typical mechanical mixing of matrix pellets and the internal structure was precisely analyzed using three-dimensional non-destructive analysis. The segregated composites slightly improved in the through-plane thermal conductivity, but the in-plane thermal conductivity increased rapidly, showing the anisotropic thermal conductivity. The maximum improvement in the in-plane thermal conductivity of the segregated composites increased by 112.5 (at 7 wt% graphene nanoplatelet) and 71.4% (at 10 wt% multi-walled carbon nanotube), respectively, compared to that of the random composites filled with the same amount of filler. On the other hand, the electrical conductivity of the segregated composites was isotropic due to the difference in the transport mechanisms of electrons and phonons. The anisotropic thermal conductivity developed by the segregated network was helpful in inducing effective heat dissipation of commercial smartphone logic boards.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"26 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropically enhanced thermal conductivity of polymer composites based on segregated nanocarbon networks\",\"authors\":\"Gyun Young Yoo, Ki Hoon Kim, Yong Chae Jung, Hunsu Lee, Seong Yun Kim\",\"doi\":\"10.1007/s42823-024-00799-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Segregated composites, where fillers are selectively placed at the matrix interface to form a segregated filler network, are attracting attention because they can provide excellent conductive properties at low filler content. In this study, the anisotropic enhancement in thermal conductivity of composites was discovered due to the unique structure of the segregated network. The segregated composites were produced using a typical mechanical mixing of matrix pellets and the internal structure was precisely analyzed using three-dimensional non-destructive analysis. The segregated composites slightly improved in the through-plane thermal conductivity, but the in-plane thermal conductivity increased rapidly, showing the anisotropic thermal conductivity. The maximum improvement in the in-plane thermal conductivity of the segregated composites increased by 112.5 (at 7 wt% graphene nanoplatelet) and 71.4% (at 10 wt% multi-walled carbon nanotube), respectively, compared to that of the random composites filled with the same amount of filler. On the other hand, the electrical conductivity of the segregated composites was isotropic due to the difference in the transport mechanisms of electrons and phonons. The anisotropic thermal conductivity developed by the segregated network was helpful in inducing effective heat dissipation of commercial smartphone logic boards.</p>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42823-024-00799-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00799-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Anisotropically enhanced thermal conductivity of polymer composites based on segregated nanocarbon networks
Segregated composites, where fillers are selectively placed at the matrix interface to form a segregated filler network, are attracting attention because they can provide excellent conductive properties at low filler content. In this study, the anisotropic enhancement in thermal conductivity of composites was discovered due to the unique structure of the segregated network. The segregated composites were produced using a typical mechanical mixing of matrix pellets and the internal structure was precisely analyzed using three-dimensional non-destructive analysis. The segregated composites slightly improved in the through-plane thermal conductivity, but the in-plane thermal conductivity increased rapidly, showing the anisotropic thermal conductivity. The maximum improvement in the in-plane thermal conductivity of the segregated composites increased by 112.5 (at 7 wt% graphene nanoplatelet) and 71.4% (at 10 wt% multi-walled carbon nanotube), respectively, compared to that of the random composites filled with the same amount of filler. On the other hand, the electrical conductivity of the segregated composites was isotropic due to the difference in the transport mechanisms of electrons and phonons. The anisotropic thermal conductivity developed by the segregated network was helpful in inducing effective heat dissipation of commercial smartphone logic boards.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.