{"title":"日冕磁场的磁通量校准","authors":"Marek Vandas, Evgeny Romashets","doi":"10.1007/s11207-024-02364-1","DOIUrl":null,"url":null,"abstract":"<div><p>Romashets and Vandas (2024) derived a method for the determination of Euler potentials at a spherical surface and applied it to the geomagnetic field. Here, we apply it to find Euler potentials at the source surface. A regular mesh defined by Euler potentials divides the source surface to surface elements with the same magnetic flux. By tracing magnetic-field lines away from the source surface, Euler potentials can be extended into the heliosphere.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02364-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Flux Calibration of Coronal Magnetic Field\",\"authors\":\"Marek Vandas, Evgeny Romashets\",\"doi\":\"10.1007/s11207-024-02364-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Romashets and Vandas (2024) derived a method for the determination of Euler potentials at a spherical surface and applied it to the geomagnetic field. Here, we apply it to find Euler potentials at the source surface. A regular mesh defined by Euler potentials divides the source surface to surface elements with the same magnetic flux. By tracing magnetic-field lines away from the source surface, Euler potentials can be extended into the heliosphere.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11207-024-02364-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02364-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02364-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Romashets and Vandas (2024) derived a method for the determination of Euler potentials at a spherical surface and applied it to the geomagnetic field. Here, we apply it to find Euler potentials at the source surface. A regular mesh defined by Euler potentials divides the source surface to surface elements with the same magnetic flux. By tracing magnetic-field lines away from the source surface, Euler potentials can be extended into the heliosphere.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.