鲍曼不动杆菌噬菌体的分离、表征和潜在应用,以对抗广泛耐药菌株

IF 1.9 4区 医学 Q3 GENETICS & HEREDITY
Sanaz Rastegar, Mikael Skurnik, Hira Niaz, Omid Tadjrobehkar, Ali Samareh, Hossein Hosseini-Nave, Salehe Sabouri
{"title":"鲍曼不动杆菌噬菌体的分离、表征和潜在应用,以对抗广泛耐药菌株","authors":"Sanaz Rastegar, Mikael Skurnik, Hira Niaz, Omid Tadjrobehkar, Ali Samareh, Hossein Hosseini-Nave, Salehe Sabouri","doi":"10.1007/s11262-024-02103-5","DOIUrl":null,"url":null,"abstract":"<p>One of the significant issues in treating bacterial infections is the increasing prevalence of extensively drug-resistant (XDR) strains of <i>Acinetobacter baumannii</i>. In the face of limited or no viable treatment options for extensively drug-resistant (XDR) bacteria, there is a renewed interest in utilizing bacteriophages as a treatment option. Three <i>Acinetobacter</i> phages (vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln) were identified from hospital sewage and analyzed for their morphology, host ranges, and their genome sequences were determined and annotated. These phages and vB_AbaS_SA1 were combined to form a phage cocktail. The antibacterial effects of this cocktail and its combinations with selected antimicrobial agents were evaluated against the XDR <i>A. baumannii</i> strains. The phages exhibited <i>siphovirus</i> morphology. Out of a total of 30 XDR <i>A. baumannii</i> isolates, 33% were sensitive to vB_AbaS_Ftm, 30% to vB_AbaS_Gln, and 16.66% to vB_AbaS_Eva. When these phages were combined with antibiotics, they demonstrated a synergistic effect. The genome sizes of vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln were 48487, 50174, and 50043 base pairs (bp), respectively, and showed high similarity. Phage cocktail, when combined with antibiotics, showed synergistic effects on extensively drug-resistant (XDR) strains of <i>A. baumannii</i>. However, the need for further study to fully understand the mechanisms of action and potential limitations of using these phages is highlighted.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":"68 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains\",\"authors\":\"Sanaz Rastegar, Mikael Skurnik, Hira Niaz, Omid Tadjrobehkar, Ali Samareh, Hossein Hosseini-Nave, Salehe Sabouri\",\"doi\":\"10.1007/s11262-024-02103-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the significant issues in treating bacterial infections is the increasing prevalence of extensively drug-resistant (XDR) strains of <i>Acinetobacter baumannii</i>. In the face of limited or no viable treatment options for extensively drug-resistant (XDR) bacteria, there is a renewed interest in utilizing bacteriophages as a treatment option. Three <i>Acinetobacter</i> phages (vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln) were identified from hospital sewage and analyzed for their morphology, host ranges, and their genome sequences were determined and annotated. These phages and vB_AbaS_SA1 were combined to form a phage cocktail. The antibacterial effects of this cocktail and its combinations with selected antimicrobial agents were evaluated against the XDR <i>A. baumannii</i> strains. The phages exhibited <i>siphovirus</i> morphology. Out of a total of 30 XDR <i>A. baumannii</i> isolates, 33% were sensitive to vB_AbaS_Ftm, 30% to vB_AbaS_Gln, and 16.66% to vB_AbaS_Eva. When these phages were combined with antibiotics, they demonstrated a synergistic effect. The genome sizes of vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln were 48487, 50174, and 50043 base pairs (bp), respectively, and showed high similarity. Phage cocktail, when combined with antibiotics, showed synergistic effects on extensively drug-resistant (XDR) strains of <i>A. baumannii</i>. However, the need for further study to fully understand the mechanisms of action and potential limitations of using these phages is highlighted.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-024-02103-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-024-02103-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

治疗细菌感染的重要问题之一是鲍曼不动杆菌广泛耐药(XDR)菌株的日益流行。面对广泛耐药(XDR)细菌的有限或不可行的治疗方案,人们再次对利用噬菌体作为治疗方案产生了兴趣。我们从医院污水中鉴定出了三种醋酸杆菌噬菌体(vB_AbaS_Ftm、vB_AbaS_Eva 和 vB_AbaS_Gln),并对它们的形态和宿主范围进行了分析,确定和注释了它们的基因组序列。这些噬菌体与 vB_AbaS_SA1 结合形成了鸡尾酒噬菌体。针对 XDR 鲍曼尼氏菌菌株,对该鸡尾酒噬菌体及其与特定抗菌剂的组合的抗菌效果进行了评估。噬菌体呈现虹吸病毒形态。在总共 30 株 XDR 鲍曼尼氏菌分离株中,33% 对 vB_AbaS_Ftm、30% 对 vB_AbaS_Gln、16.66% 对 vB_AbaS_Eva 敏感。当这些噬菌体与抗生素结合使用时,它们会产生协同效应。vB_AbaS_Ftm 、vB_AbaS_Eva 和 vB_AbaS_Gln 的基因组大小分别为 48487、50174 和 50043 碱基对(bp),具有高度相似性。噬菌体鸡尾酒与抗生素联合使用,对广泛耐药(XDR)鲍曼氏菌株有协同作用。不过,需要进一步研究以充分了解这些噬菌体的作用机制和使用这些噬菌体的潜在局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains

Isolation, characterization, and potential application of Acinetobacter baumannii phages against extensively drug-resistant strains

One of the significant issues in treating bacterial infections is the increasing prevalence of extensively drug-resistant (XDR) strains of Acinetobacter baumannii. In the face of limited or no viable treatment options for extensively drug-resistant (XDR) bacteria, there is a renewed interest in utilizing bacteriophages as a treatment option. Three Acinetobacter phages (vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln) were identified from hospital sewage and analyzed for their morphology, host ranges, and their genome sequences were determined and annotated. These phages and vB_AbaS_SA1 were combined to form a phage cocktail. The antibacterial effects of this cocktail and its combinations with selected antimicrobial agents were evaluated against the XDR A. baumannii strains. The phages exhibited siphovirus morphology. Out of a total of 30 XDR A. baumannii isolates, 33% were sensitive to vB_AbaS_Ftm, 30% to vB_AbaS_Gln, and 16.66% to vB_AbaS_Eva. When these phages were combined with antibiotics, they demonstrated a synergistic effect. The genome sizes of vB_AbaS_Ftm, vB_AbaS_Eva, and vB_AbaS_Gln were 48487, 50174, and 50043 base pairs (bp), respectively, and showed high similarity. Phage cocktail, when combined with antibiotics, showed synergistic effects on extensively drug-resistant (XDR) strains of A. baumannii. However, the need for further study to fully understand the mechanisms of action and potential limitations of using these phages is highlighted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virus Genes
Virus Genes 医学-病毒学
CiteScore
3.30
自引率
0.00%
发文量
76
审稿时长
3 months
期刊介绍: Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools. Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments. Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信