计算强化型高维三库迪托福利门

IF 4.4 Q1 OPTICS
Fang-Fang Du, Xue-Mei Ren, Qiu-Lin Tan
{"title":"计算强化型高维三库迪托福利门","authors":"Fang-Fang Du,&nbsp;Xue-Mei Ren,&nbsp;Qiu-Lin Tan","doi":"10.1002/qute.202400313","DOIUrl":null,"url":null,"abstract":"<p>A high-dimensional quantum gate not only enables the processing of more information through parallel quantum channels but also enhances fault tolerance in a higher Hilbert space. In this paper, a protocol is presented for implementing a three-qudit <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>×</mo>\n <mn>4</mn>\n <mo>×</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$4\\times 4\\times 4$</annotation>\n </semantics></math>-Dimensional (D) Toffoli gate for a hybrid system, where the first control qudit, the second control qudit, and the target qudit of four dimension are encoded in the spatial-polarization state of a flying photon, the electron-spin state of the first two quantum dots (QDs), and the one of the remaining two QDs, respectively. Besides, the high-dimensional Toffoli gate does not require any assistance. Moreover, the gate operates deterministically in principle, as the photon is easy to manipulate feasibly using simple optical elements, and four QDs have a long electron-spin coherent time used for storage and manipulation. Furthermore, the success probability and fidelity of the high-dimensional Toffoli gate, in alignment with current technological capabilities, demonstrate satisfactory results. This indicates that it is feasible in experimental settings and promises a quantum computing paradigm that excels in speed, error resilience, and scalability for intricate quantum operations.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computation-Strengthened High-Dimensional Three-Qudit Toffoli Gate\",\"authors\":\"Fang-Fang Du,&nbsp;Xue-Mei Ren,&nbsp;Qiu-Lin Tan\",\"doi\":\"10.1002/qute.202400313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A high-dimensional quantum gate not only enables the processing of more information through parallel quantum channels but also enhances fault tolerance in a higher Hilbert space. In this paper, a protocol is presented for implementing a three-qudit <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mo>×</mo>\\n <mn>4</mn>\\n <mo>×</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$4\\\\times 4\\\\times 4$</annotation>\\n </semantics></math>-Dimensional (D) Toffoli gate for a hybrid system, where the first control qudit, the second control qudit, and the target qudit of four dimension are encoded in the spatial-polarization state of a flying photon, the electron-spin state of the first two quantum dots (QDs), and the one of the remaining two QDs, respectively. Besides, the high-dimensional Toffoli gate does not require any assistance. Moreover, the gate operates deterministically in principle, as the photon is easy to manipulate feasibly using simple optical elements, and four QDs have a long electron-spin coherent time used for storage and manipulation. Furthermore, the success probability and fidelity of the high-dimensional Toffoli gate, in alignment with current technological capabilities, demonstrate satisfactory results. This indicates that it is feasible in experimental settings and promises a quantum computing paradigm that excels in speed, error resilience, and scalability for intricate quantum operations.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

高维量子门不仅能通过并行量子通道处理更多信息,还能在更高的希尔伯特空间增强容错能力。本文提出了一种为混合系统实现三量子-四维(D)托福利门的协议,其中四维的第一控制量子、第二控制量子和目标量子分别编码在飞行光子的空间偏振态、前两个量子点(QD)的电子自旋态和其余两个量子点的电子自旋态中。此外,高维托福利门不需要任何辅助。此外,由于光子易于使用简单的光学元件进行可行的操纵,且四个量子点具有用于存储和操纵的较长的电子-自旋相干时间,因此该门在原理上可确定性地运行。此外,高维托福利门的成功概率和保真度与当前的技术能力相一致,显示出令人满意的结果。这表明它在实验环境中是可行的,并有望成为一种在速度、抗错能力和复杂量子操作的可扩展性方面都很出色的量子计算范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Computation-Strengthened High-Dimensional Three-Qudit Toffoli Gate

A Computation-Strengthened High-Dimensional Three-Qudit Toffoli Gate

A high-dimensional quantum gate not only enables the processing of more information through parallel quantum channels but also enhances fault tolerance in a higher Hilbert space. In this paper, a protocol is presented for implementing a three-qudit 4 × 4 × 4 $4\times 4\times 4$ -Dimensional (D) Toffoli gate for a hybrid system, where the first control qudit, the second control qudit, and the target qudit of four dimension are encoded in the spatial-polarization state of a flying photon, the electron-spin state of the first two quantum dots (QDs), and the one of the remaining two QDs, respectively. Besides, the high-dimensional Toffoli gate does not require any assistance. Moreover, the gate operates deterministically in principle, as the photon is easy to manipulate feasibly using simple optical elements, and four QDs have a long electron-spin coherent time used for storage and manipulation. Furthermore, the success probability and fidelity of the high-dimensional Toffoli gate, in alignment with current technological capabilities, demonstrate satisfactory results. This indicates that it is feasible in experimental settings and promises a quantum computing paradigm that excels in speed, error resilience, and scalability for intricate quantum operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信