Léo J. Roche, Fridtjof Betz, Yuhui Yang, Imad Limame, Ching-Wen Shih, Sven Burger, Stephan Reitzenstein
{"title":"用于集成量子光子电路的微柱-波导耦合系统的数值研究","authors":"Léo J. Roche, Fridtjof Betz, Yuhui Yang, Imad Limame, Ching-Wen Shih, Sven Burger, Stephan Reitzenstein","doi":"10.1002/qute.202400195","DOIUrl":null,"url":null,"abstract":"<p>The on-chip resonant excitation of single quantum dots (QDs) via integrated microlasers represents an effective and scalable method for integrated quantum photonics applications based on on-demand single-photon emitters. In this study, the design and numerical optimization of the evanescent coupling between whispering gallery modes (WGMs) of a micropillar resonator and a nearby single-mode ridge waveguide in the Al(Ga)As/GaAs material system are presented. In this study, such systems are examined within a wavelength range of 930 nm, which is suitable for resonant excitation of typical self-assembled InGaAs quantum dots. In particular, the coupling and the transmitted optical power of a WGM resonator to a ridge waveguide are examined for a range of gap spacings, with the objective of optimizing the photon coupling efficiency and Q-factor of the monolithically integrated nanophotonic system. The findings of this study enable to identify the best device parameters for subsequent device fabrication. The findings establish a foundation for the production of highly effective photonic quantum circuits through the use of WGM microlasers integrated into evanescently coupled waveguide systems, including resonantly excited single quantum dots.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400195","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of a Coupled Micropillar - Waveguide System for Integrated Quantum Photonic Circuits\",\"authors\":\"Léo J. Roche, Fridtjof Betz, Yuhui Yang, Imad Limame, Ching-Wen Shih, Sven Burger, Stephan Reitzenstein\",\"doi\":\"10.1002/qute.202400195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The on-chip resonant excitation of single quantum dots (QDs) via integrated microlasers represents an effective and scalable method for integrated quantum photonics applications based on on-demand single-photon emitters. In this study, the design and numerical optimization of the evanescent coupling between whispering gallery modes (WGMs) of a micropillar resonator and a nearby single-mode ridge waveguide in the Al(Ga)As/GaAs material system are presented. In this study, such systems are examined within a wavelength range of 930 nm, which is suitable for resonant excitation of typical self-assembled InGaAs quantum dots. In particular, the coupling and the transmitted optical power of a WGM resonator to a ridge waveguide are examined for a range of gap spacings, with the objective of optimizing the photon coupling efficiency and Q-factor of the monolithically integrated nanophotonic system. The findings of this study enable to identify the best device parameters for subsequent device fabrication. The findings establish a foundation for the production of highly effective photonic quantum circuits through the use of WGM microlasers integrated into evanescently coupled waveguide systems, including resonantly excited single quantum dots.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Numerical Investigation of a Coupled Micropillar - Waveguide System for Integrated Quantum Photonic Circuits
The on-chip resonant excitation of single quantum dots (QDs) via integrated microlasers represents an effective and scalable method for integrated quantum photonics applications based on on-demand single-photon emitters. In this study, the design and numerical optimization of the evanescent coupling between whispering gallery modes (WGMs) of a micropillar resonator and a nearby single-mode ridge waveguide in the Al(Ga)As/GaAs material system are presented. In this study, such systems are examined within a wavelength range of 930 nm, which is suitable for resonant excitation of typical self-assembled InGaAs quantum dots. In particular, the coupling and the transmitted optical power of a WGM resonator to a ridge waveguide are examined for a range of gap spacings, with the objective of optimizing the photon coupling efficiency and Q-factor of the monolithically integrated nanophotonic system. The findings of this study enable to identify the best device parameters for subsequent device fabrication. The findings establish a foundation for the production of highly effective photonic quantum circuits through the use of WGM microlasers integrated into evanescently coupled waveguide systems, including resonantly excited single quantum dots.