任意维 k$k$-Uniform 混合态的纯度与构建

IF 4.4 Q1 OPTICS
Xiao Zhang, Shanqi Pang, Shao-Ming Fei, Zhu-Jun Zheng
{"title":"任意维 k$k$-Uniform 混合态的纯度与构建","authors":"Xiao Zhang,&nbsp;Shanqi Pang,&nbsp;Shao-Ming Fei,&nbsp;Zhu-Jun Zheng","doi":"10.1002/qute.202400245","DOIUrl":null,"url":null,"abstract":"<p><i>k</i>-uniform mixed states are a significant class of states characterized by all <i>k</i>-party reduced states being maximally mixed.Novel methodologies are constructed for constructing <i>k</i>-uniform mixed states with the highest possible purity. By using the orthogonal partition of orthogonal arrays, a series of new <i>k</i>-uniform mixed states is derived. Consequently, an infinite number of higher-dimensional <i>k</i>-uniform mixed states, including those with highest purity, can be generated.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purity and Construction of Arbitrary Dimensional \\n \\n k\\n $k$\\n -Uniform Mixed States\",\"authors\":\"Xiao Zhang,&nbsp;Shanqi Pang,&nbsp;Shao-Ming Fei,&nbsp;Zhu-Jun Zheng\",\"doi\":\"10.1002/qute.202400245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>k</i>-uniform mixed states are a significant class of states characterized by all <i>k</i>-party reduced states being maximally mixed.Novel methodologies are constructed for constructing <i>k</i>-uniform mixed states with the highest possible purity. By using the orthogonal partition of orthogonal arrays, a series of new <i>k</i>-uniform mixed states is derived. Consequently, an infinite number of higher-dimensional <i>k</i>-uniform mixed states, including those with highest purity, can be generated.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

k-uniform 混合状态是一类重要的状态,其特征是所有 k 方还原状态都是最大混合状态。通过使用正交阵列的正交分区,得出了一系列新的 k-uniform 混合态。因此,可以生成无限多的高维 k-uniform 混合态,包括纯度最高的混合态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purity and Construction of Arbitrary Dimensional k $k$ -Uniform Mixed States

k-uniform mixed states are a significant class of states characterized by all k-party reduced states being maximally mixed.Novel methodologies are constructed for constructing k-uniform mixed states with the highest possible purity. By using the orthogonal partition of orthogonal arrays, a series of new k-uniform mixed states is derived. Consequently, an infinite number of higher-dimensional k-uniform mixed states, including those with highest purity, can be generated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信