使用无测量辅助系统的高维光子量子计算

IF 4.4 Q1 OPTICS
Xue-Mei Ren, Fang-Fang Du
{"title":"使用无测量辅助系统的高维光子量子计算","authors":"Xue-Mei Ren,&nbsp;Fang-Fang Du","doi":"10.1002/qute.202400208","DOIUrl":null,"url":null,"abstract":"<p>Enhancing the capabilities of quantum computing relies heavily on harnessing the power of qudit-based high-dimensional quantum gates. In the study, single-qudit 4D <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$ X$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>X</mi>\n <mn>2</mn>\n </msup>\n <annotation>$ X^{2}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <msup>\n <mi>X</mi>\n <mo>†</mo>\n </msup>\n <annotation>$ X^{\\dagger }$</annotation>\n </semantics></math> gates tailored for a two-photon system in polarization states are presented. Furthermore, a two-qudit <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>×</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$4\\times 4$</annotation>\n </semantics></math>-dimensional controlled-not (CNOT) gate designed for a four-photon system is introduced. These high-dimensional gates can offer versatile and straightforward optical implementations, ensuring them to fulfill in a deterministic way. To facilitate these processes, an auxiliary system in the form of a <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>-type atom residing in a cavity is employed. Remarkably, the auxiliary system retains its original state after the operation process ends, so it is not required to measure and plays a pivotal role in promoting effective interactions among distinct photons in its extended coherence time. Importantly, the in-depth analysis of the fidelities and efficiencies of these quantum gates showcase remarkable outcomes, affirming the superiority of the proposed protocols. Therefore, these high-dimensional gates not only amplify quantum parallelism, but also bolster the speed of quantum computations, fortify resilience against errors, and foster scalability for executing intricate quantum operations.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Dimensional Photonic Quantum Computing with a Measurement-Free Auxiliary System\",\"authors\":\"Xue-Mei Ren,&nbsp;Fang-Fang Du\",\"doi\":\"10.1002/qute.202400208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancing the capabilities of quantum computing relies heavily on harnessing the power of qudit-based high-dimensional quantum gates. In the study, single-qudit 4D <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$ X$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>X</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$ X^{2}$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <msup>\\n <mi>X</mi>\\n <mo>†</mo>\\n </msup>\\n <annotation>$ X^{\\\\dagger }$</annotation>\\n </semantics></math> gates tailored for a two-photon system in polarization states are presented. Furthermore, a two-qudit <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mo>×</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$4\\\\times 4$</annotation>\\n </semantics></math>-dimensional controlled-not (CNOT) gate designed for a four-photon system is introduced. These high-dimensional gates can offer versatile and straightforward optical implementations, ensuring them to fulfill in a deterministic way. To facilitate these processes, an auxiliary system in the form of a <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math>-type atom residing in a cavity is employed. Remarkably, the auxiliary system retains its original state after the operation process ends, so it is not required to measure and plays a pivotal role in promoting effective interactions among distinct photons in its extended coherence time. Importantly, the in-depth analysis of the fidelities and efficiencies of these quantum gates showcase remarkable outcomes, affirming the superiority of the proposed protocols. Therefore, these high-dimensional gates not only amplify quantum parallelism, but also bolster the speed of quantum computations, fortify resilience against errors, and foster scalability for executing intricate quantum operations.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

增强量子计算能力在很大程度上依赖于利用基于量子门的高维量子门的力量。在这项研究中,介绍了为偏振态双光子系统量身定制的单量子 4D 、 、 和门。此外,还介绍了为四光子系统设计的双位四维受控不(CNOT)门。这些高维门可以提供多功能和直接的光学实现,确保它们以确定性的方式完成。为了促进这些过程,我们采用了一个以-型原子形式存在于空腔中的辅助系统。值得注意的是,辅助系统在操作过程结束后仍保持其原始状态,因此无需测量,并在其延长的相干时间内对促进不同光子之间的有效相互作用发挥了关键作用。重要的是,对这些量子门的保真度和效率的深入分析显示了显著的成果,肯定了所提出协议的优越性。因此,这些高维门不仅能扩大量子并行性,还能提高量子计算的速度,增强抗错能力,并促进执行复杂量子操作的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Dimensional Photonic Quantum Computing with a Measurement-Free Auxiliary System

High-Dimensional Photonic Quantum Computing with a Measurement-Free Auxiliary System

Enhancing the capabilities of quantum computing relies heavily on harnessing the power of qudit-based high-dimensional quantum gates. In the study, single-qudit 4D X $ X$ , X 2 $ X^{2}$ , and X $ X^{\dagger }$ gates tailored for a two-photon system in polarization states are presented. Furthermore, a two-qudit 4 × 4 $4\times 4$ -dimensional controlled-not (CNOT) gate designed for a four-photon system is introduced. These high-dimensional gates can offer versatile and straightforward optical implementations, ensuring them to fulfill in a deterministic way. To facilitate these processes, an auxiliary system in the form of a Λ $\Lambda$ -type atom residing in a cavity is employed. Remarkably, the auxiliary system retains its original state after the operation process ends, so it is not required to measure and plays a pivotal role in promoting effective interactions among distinct photons in its extended coherence time. Importantly, the in-depth analysis of the fidelities and efficiencies of these quantum gates showcase remarkable outcomes, affirming the superiority of the proposed protocols. Therefore, these high-dimensional gates not only amplify quantum parallelism, but also bolster the speed of quantum computations, fortify resilience against errors, and foster scalability for executing intricate quantum operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信