利用高阶陌生人增强多视角聚类的类间可分性

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chundan Liu;Qian Zhang;Yongyong Chen;Junyu Dong;Chong Peng
{"title":"利用高阶陌生人增强多视角聚类的类间可分性","authors":"Chundan Liu;Qian Zhang;Yongyong Chen;Junyu Dong;Chong Peng","doi":"10.1109/LSP.2024.3455988","DOIUrl":null,"url":null,"abstract":"Multi-view clustering has attracted extensive attention in recent years, which aims at integrating data from different views to improve the clustering performance. In this letter, we propose a novel approach for multi-view clustering. We propose to leverage high-order stranger information of the samples with the aid of Markov random walks to enhance inter-class separability of representation matrix in each view. Then, we seek a direct and intuitive clustering interpretation through view-specific spectral embeddings and cross-view spectral rotation fusion with auto-adjusted weights. Extensive experimental results confirm the effectiveness of our method.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Inter-Class Separability With High-Order Strangers for Multi-View Clustering\",\"authors\":\"Chundan Liu;Qian Zhang;Yongyong Chen;Junyu Dong;Chong Peng\",\"doi\":\"10.1109/LSP.2024.3455988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view clustering has attracted extensive attention in recent years, which aims at integrating data from different views to improve the clustering performance. In this letter, we propose a novel approach for multi-view clustering. We propose to leverage high-order stranger information of the samples with the aid of Markov random walks to enhance inter-class separability of representation matrix in each view. Then, we seek a direct and intuitive clustering interpretation through view-specific spectral embeddings and cross-view spectral rotation fusion with auto-adjusted weights. Extensive experimental results confirm the effectiveness of our method.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669096/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669096/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,多视图聚类引起了广泛关注,其目的是整合来自不同视图的数据以提高聚类性能。在这封信中,我们提出了一种新颖的多视图聚类方法。我们建议借助马尔可夫随机游走来利用样本的高阶陌生人信息,以增强每个视图中表示矩阵的类间可分性。然后,我们通过特定视图的光谱嵌入和自动调整权重的跨视图光谱旋转融合,寻求一种直接而直观的聚类解释。广泛的实验结果证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Inter-Class Separability With High-Order Strangers for Multi-View Clustering
Multi-view clustering has attracted extensive attention in recent years, which aims at integrating data from different views to improve the clustering performance. In this letter, we propose a novel approach for multi-view clustering. We propose to leverage high-order stranger information of the samples with the aid of Markov random walks to enhance inter-class separability of representation matrix in each view. Then, we seek a direct and intuitive clustering interpretation through view-specific spectral embeddings and cross-view spectral rotation fusion with auto-adjusted weights. Extensive experimental results confirm the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信