用于图像检索的频域辅助网络

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhiming Zhang;Jiao Liu;Yongfeng Dong;Jun Zhang
{"title":"用于图像检索的频域辅助网络","authors":"Zhiming Zhang;Jiao Liu;Yongfeng Dong;Jun Zhang","doi":"10.1109/LSP.2024.3456632","DOIUrl":null,"url":null,"abstract":"Image retrieval aims to find the most semantically similar images in the database. Existing deep hash-based retrieval algorithms utilize data augmentation strategies thus generating generalized hash codes. However, simple data augmentation only improves the accuracy of hash codes from the perspective of sample diversity, without fully utilizing the inherent characteristics of the images. In this letter, we explore the frequency domain information of images and propose a Frequency Domain Auxiliary Network (FDANet) for deep hash retrieval. To capture frequency domain information that can cope with image transformations, we develop the spectrum enhancement module (SEM) in FDANet. The SEM utilizes Fourier transform techniques to extract the amplitude component that can reflect the low-level statistics of the image. Then, leveraging the extracted amplitude components, the retrieval network enhances its perception of regions undergoing relative changes in the original spatial domain. Experiments on several image retrieval benchmarks demonstrate that our method outperforms other state-of-the-art hash algorithms in terms of performance on the test metrics.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Frequency Domain Auxiliary Network for Image Retrieval\",\"authors\":\"Zhiming Zhang;Jiao Liu;Yongfeng Dong;Jun Zhang\",\"doi\":\"10.1109/LSP.2024.3456632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image retrieval aims to find the most semantically similar images in the database. Existing deep hash-based retrieval algorithms utilize data augmentation strategies thus generating generalized hash codes. However, simple data augmentation only improves the accuracy of hash codes from the perspective of sample diversity, without fully utilizing the inherent characteristics of the images. In this letter, we explore the frequency domain information of images and propose a Frequency Domain Auxiliary Network (FDANet) for deep hash retrieval. To capture frequency domain information that can cope with image transformations, we develop the spectrum enhancement module (SEM) in FDANet. The SEM utilizes Fourier transform techniques to extract the amplitude component that can reflect the low-level statistics of the image. Then, leveraging the extracted amplitude components, the retrieval network enhances its perception of regions undergoing relative changes in the original spatial domain. Experiments on several image retrieval benchmarks demonstrate that our method outperforms other state-of-the-art hash algorithms in terms of performance on the test metrics.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670001/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670001/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

图像检索旨在找到数据库中语义最相似的图像。现有的基于深度散列的检索算法采用数据增强策略,从而生成通用散列码。然而,简单的数据增强只能从样本多样性的角度提高哈希编码的准确性,而不能充分利用图像的固有特性。在这封信中,我们探索了图像的频域信息,并提出了一种用于深度哈希检索的频域辅助网络(FDANet)。为了捕捉能应对图像变换的频域信息,我们在 FDANet 中开发了频谱增强模块(SEM)。频谱增强模块利用傅立叶变换技术提取能反映图像低层次统计信息的振幅分量。然后,检索网络利用提取的振幅分量,增强对原始空间域中发生相对变化的区域的感知。对多个图像检索基准的实验表明,我们的方法在测试指标上的性能优于其他最先进的哈希算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Frequency Domain Auxiliary Network for Image Retrieval
Image retrieval aims to find the most semantically similar images in the database. Existing deep hash-based retrieval algorithms utilize data augmentation strategies thus generating generalized hash codes. However, simple data augmentation only improves the accuracy of hash codes from the perspective of sample diversity, without fully utilizing the inherent characteristics of the images. In this letter, we explore the frequency domain information of images and propose a Frequency Domain Auxiliary Network (FDANet) for deep hash retrieval. To capture frequency domain information that can cope with image transformations, we develop the spectrum enhancement module (SEM) in FDANet. The SEM utilizes Fourier transform techniques to extract the amplitude component that can reflect the low-level statistics of the image. Then, leveraging the extracted amplitude components, the retrieval network enhances its perception of regions undergoing relative changes in the original spatial domain. Experiments on several image retrieval benchmarks demonstrate that our method outperforms other state-of-the-art hash algorithms in terms of performance on the test metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信