热量和气泡传质对碱性电解制氢效率的影响

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Nian Xu, Bingbing Qiu, Zucun Rui, Tianxiang Ji, Zilong Liu, Huaqiang Chu
{"title":"热量和气泡传质对碱性电解制氢效率的影响","authors":"Nian Xu,&nbsp;Bingbing Qiu,&nbsp;Zucun Rui,&nbsp;Tianxiang Ji,&nbsp;Zilong Liu,&nbsp;Huaqiang Chu","doi":"10.1007/s12274-024-6922-9","DOIUrl":null,"url":null,"abstract":"<div><p>This review highlights the critical effects of heat transfer and bubble mass transfer in alkaline water electrolysis on hydrogen generation efficiency. To improve heat transfer performance, the study focuses on reducing electrical resistance and controlling the electrolysis system’s temperature. It proposes innovative strategies such as using metal matrix composites and catalysts to optimize electrode structure, precise temperature and pressure regulation and enhanced electrolyte concentration. Additionally, the study examines the dynamics of bubble mass transfer, proposing effective strategies to reduce bubble coverage, including hydrophilic electrodes, mechanically circulating the electrolyte and voltage smoothing with pressure swinging. This study contributes to the advancement of hydrogen energy technology with practical strategies. By adjusting the electrolysis system to optimize the combined effect of these factors, we can improve the efficiency, economy and environmental friendliness of hydrogen production. This will contribute to the transformation of the global energy mix and the implementation of sustainable development strategies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9345 - 9370"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of heat and bubble mass transfer on the efficiency of alkaline electrolysis hydrogen production\",\"authors\":\"Nian Xu,&nbsp;Bingbing Qiu,&nbsp;Zucun Rui,&nbsp;Tianxiang Ji,&nbsp;Zilong Liu,&nbsp;Huaqiang Chu\",\"doi\":\"10.1007/s12274-024-6922-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review highlights the critical effects of heat transfer and bubble mass transfer in alkaline water electrolysis on hydrogen generation efficiency. To improve heat transfer performance, the study focuses on reducing electrical resistance and controlling the electrolysis system’s temperature. It proposes innovative strategies such as using metal matrix composites and catalysts to optimize electrode structure, precise temperature and pressure regulation and enhanced electrolyte concentration. Additionally, the study examines the dynamics of bubble mass transfer, proposing effective strategies to reduce bubble coverage, including hydrophilic electrodes, mechanically circulating the electrolyte and voltage smoothing with pressure swinging. This study contributes to the advancement of hydrogen energy technology with practical strategies. By adjusting the electrolysis system to optimize the combined effect of these factors, we can improve the efficiency, economy and environmental friendliness of hydrogen production. This will contribute to the transformation of the global energy mix and the implementation of sustainable development strategies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9345 - 9370\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6922-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6922-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本综述强调了碱性水电解过程中传热和气泡传质对制氢效率的关键影响。为提高传热性能,研究重点是降低电阻和控制电解系统的温度。研究提出了创新策略,如使用金属基复合材料和催化剂优化电极结构、精确调节温度和压力以及提高电解液浓度。此外,该研究还探讨了气泡传质的动力学,提出了减少气泡覆盖的有效策略,包括亲水性电极、电解液机械循环以及利用压力摆动平滑电压。这项研究为氢能技术的发展提供了实用的策略。通过调整电解系统以优化这些因素的综合效应,我们可以提高制氢的效率、经济性和环保性。这将有助于全球能源结构的转型和可持续发展战略的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of heat and bubble mass transfer on the efficiency of alkaline electrolysis hydrogen production

Effect of heat and bubble mass transfer on the efficiency of alkaline electrolysis hydrogen production

This review highlights the critical effects of heat transfer and bubble mass transfer in alkaline water electrolysis on hydrogen generation efficiency. To improve heat transfer performance, the study focuses on reducing electrical resistance and controlling the electrolysis system’s temperature. It proposes innovative strategies such as using metal matrix composites and catalysts to optimize electrode structure, precise temperature and pressure regulation and enhanced electrolyte concentration. Additionally, the study examines the dynamics of bubble mass transfer, proposing effective strategies to reduce bubble coverage, including hydrophilic electrodes, mechanically circulating the electrolyte and voltage smoothing with pressure swinging. This study contributes to the advancement of hydrogen energy technology with practical strategies. By adjusting the electrolysis system to optimize the combined effect of these factors, we can improve the efficiency, economy and environmental friendliness of hydrogen production. This will contribute to the transformation of the global energy mix and the implementation of sustainable development strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信