轻松制造具有宽带等离子体共振的大面积分层等离子体腔,增强光催化氢气进化能力

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yang Li, Jiaoyan Li, Chunhua Lu, Jiahui Kou, Zhongzi Xu
{"title":"轻松制造具有宽带等离子体共振的大面积分层等离子体腔,增强光催化氢气进化能力","authors":"Yang Li, Jiaoyan Li, Chunhua Lu, Jiahui Kou, Zhongzi Xu","doi":"10.1007/s12274-024-6964-z","DOIUrl":null,"url":null,"abstract":"<p>Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with seamless size transitions for a wide plasmon resonant range remains technically challenging, requiring precise nanofabrication control and often relying on expensive and laborious techniques like e-beam lithography and reactive ion etching. Herein, a one-step forming strategy was explored to fabricate simple yet hierarchical plasmonic cavities featuring the surface nanodome array-integrated plasmonic Fabry–Pérot cavity through a facile large-area nanoimprinting method. This design leverages a uniform feature size and periodic arrangement to broaden the light utilization range of TiO<sub>2</sub> across the entire solar spectrum (200–2500 nm). It consists of an upper nanodome array cavity with vertically continuous graded sizes for broadband absorption (200–1500 nm), coupled with a bottom plate cavity that enlarges the overall cavity size to extend the range to 2500 nm. Remarkably, simply adjusting the thickness of the plate cavity can tune the resonant position, eliminating the need for expensive mold modifications. When combined with TiO<sub>2</sub>, this hierarchical plasmonic cavity significantly enhances the photocatalytic hydrogen evolution rate to 36.3 µmol/h, achieving a remarkable 9.8-fold increase compared to pure TiO<sub>2</sub> under full-spectrum illumination. This approach offers a convenient and inexpensive alternative to sophisticated nanofabrication techniques for large-area hierarchical plasmonic cavities with broadband plasmon resonance to enhance the photocatalytic hydrogen evolution.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile fabrication of large-area hierarchical plasmonic cavities with broadband plasmon resonance for enhanced photocatalytic hydrogen evolution\",\"authors\":\"Yang Li, Jiaoyan Li, Chunhua Lu, Jiahui Kou, Zhongzi Xu\",\"doi\":\"10.1007/s12274-024-6964-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with seamless size transitions for a wide plasmon resonant range remains technically challenging, requiring precise nanofabrication control and often relying on expensive and laborious techniques like e-beam lithography and reactive ion etching. Herein, a one-step forming strategy was explored to fabricate simple yet hierarchical plasmonic cavities featuring the surface nanodome array-integrated plasmonic Fabry–Pérot cavity through a facile large-area nanoimprinting method. This design leverages a uniform feature size and periodic arrangement to broaden the light utilization range of TiO<sub>2</sub> across the entire solar spectrum (200–2500 nm). It consists of an upper nanodome array cavity with vertically continuous graded sizes for broadband absorption (200–1500 nm), coupled with a bottom plate cavity that enlarges the overall cavity size to extend the range to 2500 nm. Remarkably, simply adjusting the thickness of the plate cavity can tune the resonant position, eliminating the need for expensive mold modifications. When combined with TiO<sub>2</sub>, this hierarchical plasmonic cavity significantly enhances the photocatalytic hydrogen evolution rate to 36.3 µmol/h, achieving a remarkable 9.8-fold increase compared to pure TiO<sub>2</sub> under full-spectrum illumination. This approach offers a convenient and inexpensive alternative to sophisticated nanofabrication techniques for large-area hierarchical plasmonic cavities with broadband plasmon resonance to enhance the photocatalytic hydrogen evolution.\\n</p>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12274-024-6964-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6964-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

将分层等离子体腔整合到光催化技术中,为扩大光利用范围以覆盖整个太阳光谱提供了一条前景广阔的途径。然而,要在较宽的等离子体共振范围内制造出具有无缝尺寸转换的这些纳米结构,在技术上仍具有挑战性,需要精确的纳米制造控制,而且通常依赖于电子束光刻和反应离子刻蚀等昂贵而费力的技术。在此,我们探索了一种一步成型策略,通过简便的大面积纳米压印方法,制造出简单但具有层次感的等离子腔体,其特点是表面纳米圆顶阵列集成了等离子法布里-佩罗腔体。这种设计利用均匀的特征尺寸和周期性排列,在整个太阳光谱(200-2500 nm)范围内拓宽了二氧化钛的光利用范围。它包括一个具有垂直连续分级尺寸的上纳米圆顶阵列空腔,用于宽带吸收(200-1500 nm),再加上一个底板空腔,扩大了整体空腔尺寸,将吸收范围扩展到 2500 nm。值得注意的是,只需调整板腔的厚度,就能调整谐振位置,无需对昂贵的模具进行改装。当与二氧化钛(TiO2)结合使用时,这种分层质子空腔可将光催化氢气进化率显著提高到 36.3 µmol/h,与全光谱照明下的纯二氧化钛相比,显著提高了 9.8 倍。这种方法为具有宽带等离子体共振的大面积分层等离子体腔提供了一种替代复杂纳米制造技术的便捷而廉价的方法,从而提高了光催化氢气进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile fabrication of large-area hierarchical plasmonic cavities with broadband plasmon resonance for enhanced photocatalytic hydrogen evolution

Facile fabrication of large-area hierarchical plasmonic cavities with broadband plasmon resonance for enhanced photocatalytic hydrogen evolution

Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with seamless size transitions for a wide plasmon resonant range remains technically challenging, requiring precise nanofabrication control and often relying on expensive and laborious techniques like e-beam lithography and reactive ion etching. Herein, a one-step forming strategy was explored to fabricate simple yet hierarchical plasmonic cavities featuring the surface nanodome array-integrated plasmonic Fabry–Pérot cavity through a facile large-area nanoimprinting method. This design leverages a uniform feature size and periodic arrangement to broaden the light utilization range of TiO2 across the entire solar spectrum (200–2500 nm). It consists of an upper nanodome array cavity with vertically continuous graded sizes for broadband absorption (200–1500 nm), coupled with a bottom plate cavity that enlarges the overall cavity size to extend the range to 2500 nm. Remarkably, simply adjusting the thickness of the plate cavity can tune the resonant position, eliminating the need for expensive mold modifications. When combined with TiO2, this hierarchical plasmonic cavity significantly enhances the photocatalytic hydrogen evolution rate to 36.3 µmol/h, achieving a remarkable 9.8-fold increase compared to pure TiO2 under full-spectrum illumination. This approach offers a convenient and inexpensive alternative to sophisticated nanofabrication techniques for large-area hierarchical plasmonic cavities with broadband plasmon resonance to enhance the photocatalytic hydrogen evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信