Noeul Kim, Jae Hun Choi, Min Kim, Dae Soo Jung, Yun Chan Kang
{"title":"在作为三维宿主结构的双峰多孔二氧化硅-二氧化钛微球中稳定锂沉积","authors":"Noeul Kim, Jae Hun Choi, Min Kim, Dae Soo Jung, Yun Chan Kang","doi":"10.1007/s12274-024-6934-5","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional (3D) host materials for lithium metal anodes (LMAs) have gained attention because they can mitigate volume expansion and local current density through their large surface area and suppress the dendritic growth of lithium. Recent research on 3D host materials has focused on conductive materials; however, the benefits of 3D host materials cannot be fully utilized because lithium deposition begins at the top of the structure. Herein, we fabricate SiO<sub>2</sub>-TiO<sub>2</sub> composite microspheres with bimodal pore structures (bi-SiTiO) by simple spray pyrolysis. These microspheres effectively store lithium within the structure from the bottom of the electrode while preventing lithium dendrite formation. Focused ion beam-scanning transmission electron microscopy (FIB-STEM) analysis reveals that the lithiophilic properties of composite microspheres enhanced their effectiveness in storing lithium, with small pores acting as “lithium-ion sieves” for a uniform lithium-ion flux and large pores that provide sufficient volume for lithium deposition. The bi-SiTiO composite microspheres exhibit a high Coulombic efficiency of 98.5% over 200 cycles at 2.0 mA·cm<sup>−2</sup> when operated in a lithium half-cell. With a high lithium loading of 5.0 mAh·cm<sup>−2</sup>, the symmetrical cell of the bi-SiTiO electrode sustains more than 900 h. A full cell coupled with an LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode also exhibits enhanced electrochemical properties in terms of cycling stability and rate capability.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"39 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing lithium deposition within bimodal porous SiO2-TiO2 microspheres as 3D host structure\",\"authors\":\"Noeul Kim, Jae Hun Choi, Min Kim, Dae Soo Jung, Yun Chan Kang\",\"doi\":\"10.1007/s12274-024-6934-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three-dimensional (3D) host materials for lithium metal anodes (LMAs) have gained attention because they can mitigate volume expansion and local current density through their large surface area and suppress the dendritic growth of lithium. Recent research on 3D host materials has focused on conductive materials; however, the benefits of 3D host materials cannot be fully utilized because lithium deposition begins at the top of the structure. Herein, we fabricate SiO<sub>2</sub>-TiO<sub>2</sub> composite microspheres with bimodal pore structures (bi-SiTiO) by simple spray pyrolysis. These microspheres effectively store lithium within the structure from the bottom of the electrode while preventing lithium dendrite formation. Focused ion beam-scanning transmission electron microscopy (FIB-STEM) analysis reveals that the lithiophilic properties of composite microspheres enhanced their effectiveness in storing lithium, with small pores acting as “lithium-ion sieves” for a uniform lithium-ion flux and large pores that provide sufficient volume for lithium deposition. The bi-SiTiO composite microspheres exhibit a high Coulombic efficiency of 98.5% over 200 cycles at 2.0 mA·cm<sup>−2</sup> when operated in a lithium half-cell. With a high lithium loading of 5.0 mAh·cm<sup>−2</sup>, the symmetrical cell of the bi-SiTiO electrode sustains more than 900 h. A full cell coupled with an LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode also exhibits enhanced electrochemical properties in terms of cycling stability and rate capability.\\n</p>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12274-024-6934-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6934-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Stabilizing lithium deposition within bimodal porous SiO2-TiO2 microspheres as 3D host structure
Three-dimensional (3D) host materials for lithium metal anodes (LMAs) have gained attention because they can mitigate volume expansion and local current density through their large surface area and suppress the dendritic growth of lithium. Recent research on 3D host materials has focused on conductive materials; however, the benefits of 3D host materials cannot be fully utilized because lithium deposition begins at the top of the structure. Herein, we fabricate SiO2-TiO2 composite microspheres with bimodal pore structures (bi-SiTiO) by simple spray pyrolysis. These microspheres effectively store lithium within the structure from the bottom of the electrode while preventing lithium dendrite formation. Focused ion beam-scanning transmission electron microscopy (FIB-STEM) analysis reveals that the lithiophilic properties of composite microspheres enhanced their effectiveness in storing lithium, with small pores acting as “lithium-ion sieves” for a uniform lithium-ion flux and large pores that provide sufficient volume for lithium deposition. The bi-SiTiO composite microspheres exhibit a high Coulombic efficiency of 98.5% over 200 cycles at 2.0 mA·cm−2 when operated in a lithium half-cell. With a high lithium loading of 5.0 mAh·cm−2, the symmetrical cell of the bi-SiTiO electrode sustains more than 900 h. A full cell coupled with an LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode also exhibits enhanced electrochemical properties in terms of cycling stability and rate capability.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.