{"title":"单层 PtSe2 带的双光电导性","authors":"Zechen Li, Honglin Wang, Huaipeng Wang, Jing Li, Fangzhu Qing, Xuesong Li, Dan Xie, Hongwei Zhu","doi":"10.1007/s12274-024-6949-y","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional platinum diselenide (PtSe<sub>2</sub>) has been explored for applications in visible and infrared photodetectors, owing to its tunable electrical and optoelectronic properties governed by layer-dependent bandgaps. Studies have explored both positive photoconductivity (PPC) and negative photoconductivity (NPC) behaviors in few-layer PtSe<sub>2</sub> thin films, proposing mechanisms related to gas molecule adsorption. However, these proposed mechanisms, typically based on models with ideal limit structures, often lacked consistency with the structure and scale of polycrystalline thin films employed in actual experiments. Here, photodetectors utilizing monolayer PtSe<sub>2</sub> ribbons were designed, demonstrating a significant NPC effect upon exposure to visible light in atmospheric conditions, with device resistance increasing to over threefold the initial state. Under vacuum conditions, the device demonstrated PPC characteristics. Density functional theory calculations indicated that oxygen molecules physically adsorbed at the edges of PtSe<sub>2</sub> ribbons were integral. Laser irradiation prompted the detachment of oxygen molecules from the ribbon’s edges, leading to a decreased carrier concentration in channel conductivity. The abundant edge sites of the ribbons endowed the photodetectors with a pronounced NPC response. This study diverted from traditional multilayer PtSe<sub>2</sub> films to explore monolayer PtSe<sub>2</sub> ribbons. These ribbons, as limit structures, offered a more fundamental insight into the intrinsic photoconductivity properties of PtSe<sub>2</sub>. Photodetectors employing PtSe<sub>2</sub> ribbons presented novel application prospects in low-power photodetection, gas detection, and additional fields.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"37 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-photoconductivity in monolayer PtSe2 ribbons\",\"authors\":\"Zechen Li, Honglin Wang, Huaipeng Wang, Jing Li, Fangzhu Qing, Xuesong Li, Dan Xie, Hongwei Zhu\",\"doi\":\"10.1007/s12274-024-6949-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional platinum diselenide (PtSe<sub>2</sub>) has been explored for applications in visible and infrared photodetectors, owing to its tunable electrical and optoelectronic properties governed by layer-dependent bandgaps. Studies have explored both positive photoconductivity (PPC) and negative photoconductivity (NPC) behaviors in few-layer PtSe<sub>2</sub> thin films, proposing mechanisms related to gas molecule adsorption. However, these proposed mechanisms, typically based on models with ideal limit structures, often lacked consistency with the structure and scale of polycrystalline thin films employed in actual experiments. Here, photodetectors utilizing monolayer PtSe<sub>2</sub> ribbons were designed, demonstrating a significant NPC effect upon exposure to visible light in atmospheric conditions, with device resistance increasing to over threefold the initial state. Under vacuum conditions, the device demonstrated PPC characteristics. Density functional theory calculations indicated that oxygen molecules physically adsorbed at the edges of PtSe<sub>2</sub> ribbons were integral. Laser irradiation prompted the detachment of oxygen molecules from the ribbon’s edges, leading to a decreased carrier concentration in channel conductivity. The abundant edge sites of the ribbons endowed the photodetectors with a pronounced NPC response. This study diverted from traditional multilayer PtSe<sub>2</sub> films to explore monolayer PtSe<sub>2</sub> ribbons. These ribbons, as limit structures, offered a more fundamental insight into the intrinsic photoconductivity properties of PtSe<sub>2</sub>. Photodetectors employing PtSe<sub>2</sub> ribbons presented novel application prospects in low-power photodetection, gas detection, and additional fields.\\n</p>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12274-024-6949-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6949-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Two-dimensional platinum diselenide (PtSe2) has been explored for applications in visible and infrared photodetectors, owing to its tunable electrical and optoelectronic properties governed by layer-dependent bandgaps. Studies have explored both positive photoconductivity (PPC) and negative photoconductivity (NPC) behaviors in few-layer PtSe2 thin films, proposing mechanisms related to gas molecule adsorption. However, these proposed mechanisms, typically based on models with ideal limit structures, often lacked consistency with the structure and scale of polycrystalline thin films employed in actual experiments. Here, photodetectors utilizing monolayer PtSe2 ribbons were designed, demonstrating a significant NPC effect upon exposure to visible light in atmospheric conditions, with device resistance increasing to over threefold the initial state. Under vacuum conditions, the device demonstrated PPC characteristics. Density functional theory calculations indicated that oxygen molecules physically adsorbed at the edges of PtSe2 ribbons were integral. Laser irradiation prompted the detachment of oxygen molecules from the ribbon’s edges, leading to a decreased carrier concentration in channel conductivity. The abundant edge sites of the ribbons endowed the photodetectors with a pronounced NPC response. This study diverted from traditional multilayer PtSe2 films to explore monolayer PtSe2 ribbons. These ribbons, as limit structures, offered a more fundamental insight into the intrinsic photoconductivity properties of PtSe2. Photodetectors employing PtSe2 ribbons presented novel application prospects in low-power photodetection, gas detection, and additional fields.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.