Zhenliang Li, Yujian Rao, Zhehan Wang, Tuo Zhang, Guodong Wu, Litao Sun, Yuan Ren, Li Tao
{"title":"具有活性边缘位点的核壳结构有序介孔过渡金属二卤化物/金属氧化物异质结构的通用合成方法","authors":"Zhenliang Li, Yujian Rao, Zhehan Wang, Tuo Zhang, Guodong Wu, Litao Sun, Yuan Ren, Li Tao","doi":"10.1002/sstr.202400376","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) transition metal dichalcogenides (TMDs) are widely used in interfacial reactions and electronic devices due to their tunable bandgap and high efficiency of carrier transport. However, the lack of fully exposed active sites in bulk samples or stacked nanosheets leads to limited performances. In this work, a general method is developed to construct ordered mesoporous TMDs/metal oxides (OM-TMDs/MOs) heterostructures, including WS<sub>2</sub>/WO<sub>3</sub>, WSe<sub>2</sub>/WO<sub>3</sub>, WTe<sub>2</sub>/WO<sub>3</sub>, MoS<sub>2</sub>/MoO<sub>3</sub>, and V<sub>3</sub>S<sub>4</sub>/V<sub>2</sub>O<sub>3</sub>, through one-step thermal sulfurization (selenidation/tellurization) of self-assembled amphiphilic block copolymer/polyoxometalates clusters nanocomposites with ordered mesostructures. The OM-TMDs/MOs possess highly OM structures with high specific surface area, large pore size, and rich active edge sites in the frameworks of heterostructures. The chemiresistive gas sensor based on OM-WS<sub>2</sub>/WO<sub>3</sub> shows excellent NO<sub>2</sub>-sensing performances at room temperature, with high sensitivity, ultrahigh selectivity (<span data-altimg=\"/cms/asset/a3e5cd6e-ac04-41a3-b6e2-cce80c9d4d74/sstr202400376-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/sstr202400376-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,3\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript NO Sub Subscript 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.032em;\"><mjx-mrow size=\"s\"><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:26884062:media:sstr202400376:sstr202400376-math-0001\" display=\"inline\" location=\"graphic/sstr202400376-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,3\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper S Subscript NO Sub Subscript 2\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mrow><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">NO</mtext></mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></msub></mrow></msub></mrow>$S_{\\left(\\text{NO}\\right)_{2}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>/<i>S</i><sub>gas</sub> > 20), and fast response speed (6 s). Theoretical study reveals that the strong adsorption capacity of WS<sub>2</sub>/WO<sub>3</sub> heterostructure and edge sites of WS<sub>2</sub> for NO<sub>2</sub> molecules and the high charge transfer between them contribute to high selectivity and sensitivity of the sensor. This universal method provides novel strategy for synthesis of OM TMDs-based nanomaterials, showing great potential in various applications such as electronic devices, catalysis, energy storage, and conversions.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Synthesis of Core–Shell-Structured Ordered Mesoporous Transition Metal Dichalcogenides/Metal Oxides Heterostructures with Active Edge Sites\",\"authors\":\"Zhenliang Li, Yujian Rao, Zhehan Wang, Tuo Zhang, Guodong Wu, Litao Sun, Yuan Ren, Li Tao\",\"doi\":\"10.1002/sstr.202400376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) transition metal dichalcogenides (TMDs) are widely used in interfacial reactions and electronic devices due to their tunable bandgap and high efficiency of carrier transport. However, the lack of fully exposed active sites in bulk samples or stacked nanosheets leads to limited performances. In this work, a general method is developed to construct ordered mesoporous TMDs/metal oxides (OM-TMDs/MOs) heterostructures, including WS<sub>2</sub>/WO<sub>3</sub>, WSe<sub>2</sub>/WO<sub>3</sub>, WTe<sub>2</sub>/WO<sub>3</sub>, MoS<sub>2</sub>/MoO<sub>3</sub>, and V<sub>3</sub>S<sub>4</sub>/V<sub>2</sub>O<sub>3</sub>, through one-step thermal sulfurization (selenidation/tellurization) of self-assembled amphiphilic block copolymer/polyoxometalates clusters nanocomposites with ordered mesostructures. The OM-TMDs/MOs possess highly OM structures with high specific surface area, large pore size, and rich active edge sites in the frameworks of heterostructures. The chemiresistive gas sensor based on OM-WS<sub>2</sub>/WO<sub>3</sub> shows excellent NO<sub>2</sub>-sensing performances at room temperature, with high sensitivity, ultrahigh selectivity (<span data-altimg=\\\"/cms/asset/a3e5cd6e-ac04-41a3-b6e2-cce80c9d4d74/sstr202400376-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"3\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/sstr202400376-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\\\"0,3\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S Subscript NO Sub Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.032em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-msub data-semantic-children=\\\"1,2\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:26884062:media:sstr202400376:sstr202400376-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/sstr202400376-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper S Subscript NO Sub Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">S</mi><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"1,2\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">NO</mtext></mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></msub></mrow></msub></mrow>$S_{\\\\left(\\\\text{NO}\\\\right)_{2}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>/<i>S</i><sub>gas</sub> > 20), and fast response speed (6 s). Theoretical study reveals that the strong adsorption capacity of WS<sub>2</sub>/WO<sub>3</sub> heterostructure and edge sites of WS<sub>2</sub> for NO<sub>2</sub> molecules and the high charge transfer between them contribute to high selectivity and sensitivity of the sensor. This universal method provides novel strategy for synthesis of OM TMDs-based nanomaterials, showing great potential in various applications such as electronic devices, catalysis, energy storage, and conversions.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202400376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
二维(2D)过渡金属二掺杂物(TMDs)具有可调带隙和高载流子传输效率,因此被广泛应用于界面反应和电子器件中。然而,由于块状样品或堆叠纳米片中缺乏完全暴露的活性位点,导致其性能有限。本研究开发了一种通用方法来构建有序介孔 TMDs/金属氧化物(OM-TMDs/MOs)异质结构,包括 WS2/WO3、WSe2/WO3、WTe2/WO3、MoS2/MoO3 和 V3S4/V2O3、通过对具有有序介观结构的自组装两亲嵌段共聚物/聚氧化金属簇纳米复合材料进行一步热硫化(硒化/高纯化)。OM-TMDs/MOs 具有高度 OM 结构、高比表面积、大孔径以及异质结构框架中丰富的活性边缘位点。基于 OM-WS2/WO3 的化学电阻式气体传感器在室温下显示出优异的二氧化氮传感性能,具有高灵敏度、超高选择性(SNO2$S_{left(\text{NO}\right)_{2}}$/Sgas >20)和快速响应速度(6 s)。理论研究表明,WS2/WO3 异质结构和 WS2 边缘位点对 NO2 分子的强大吸附能力以及它们之间的高电荷转移有助于提高传感器的选择性和灵敏度。这种通用方法为合成基于 OM TMDs 的纳米材料提供了新的策略,在电子器件、催化、储能和转换等各种应用中显示出巨大的潜力。
Universal Synthesis of Core–Shell-Structured Ordered Mesoporous Transition Metal Dichalcogenides/Metal Oxides Heterostructures with Active Edge Sites
Two-dimensional (2D) transition metal dichalcogenides (TMDs) are widely used in interfacial reactions and electronic devices due to their tunable bandgap and high efficiency of carrier transport. However, the lack of fully exposed active sites in bulk samples or stacked nanosheets leads to limited performances. In this work, a general method is developed to construct ordered mesoporous TMDs/metal oxides (OM-TMDs/MOs) heterostructures, including WS2/WO3, WSe2/WO3, WTe2/WO3, MoS2/MoO3, and V3S4/V2O3, through one-step thermal sulfurization (selenidation/tellurization) of self-assembled amphiphilic block copolymer/polyoxometalates clusters nanocomposites with ordered mesostructures. The OM-TMDs/MOs possess highly OM structures with high specific surface area, large pore size, and rich active edge sites in the frameworks of heterostructures. The chemiresistive gas sensor based on OM-WS2/WO3 shows excellent NO2-sensing performances at room temperature, with high sensitivity, ultrahigh selectivity (/Sgas > 20), and fast response speed (6 s). Theoretical study reveals that the strong adsorption capacity of WS2/WO3 heterostructure and edge sites of WS2 for NO2 molecules and the high charge transfer between them contribute to high selectivity and sensitivity of the sensor. This universal method provides novel strategy for synthesis of OM TMDs-based nanomaterials, showing great potential in various applications such as electronic devices, catalysis, energy storage, and conversions.