Jun-Woo Lee, Jong Ho Won, Woosup Kim, Jwa-Bin Jeon, Myung-Yeon Cho, Sunghoon Kim, Minkyung Kim, Chulhwan Park, Weon Ho Shin, Kanghee Won, Sang-Mo Koo, Jong-Min Oh
{"title":"用新型气溶胶沉积法制造的氧化镓(III)电介质结构中的超高击穿场强","authors":"Jun-Woo Lee, Jong Ho Won, Woosup Kim, Jwa-Bin Jeon, Myung-Yeon Cho, Sunghoon Kim, Minkyung Kim, Chulhwan Park, Weon Ho Shin, Kanghee Won, Sang-Mo Koo, Jong-Min Oh","doi":"10.1002/sstr.202400321","DOIUrl":null,"url":null,"abstract":"With the increasing demand for modern high-voltage electronic devices in electric vehicles and renewable-energy systems, power semiconductor devices with high breakdown fields are becoming essential. β-Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>), which has a theoretical breakdown field of 8 MV cm<sup>−1</sup>, is being studied as a next-generation power-switch material. However, realizing a breakdown field close to this theoretical value remains challenging. In this study, an aerosol deposition-manufactured Ga<sub>2</sub>O<sub>3</sub> film boasting an extremely high breakdown field, achieved through thickness optimization, heat treatment, and a unique nozzle-tilting method, is developed. This study explores the effect of oxygen vacancies on the dielectric constant, breakdown field, and microstructure of Ga<sub>2</sub>O<sub>3</sub> films. Through these methods, Ga<sub>2</sub>O<sub>3</sub> films with a denser (98.88%) and uniform surface, made less affected by oxygen vacancies through nozzle tilting and post-annealing at 800 °C, are produced, resulting in appropriate dielectric constants (9.3 at 10 kHz), low leakage currents (5.8 × 10<sup>−11 </sup>A cm<sup>−2</sup> at 20 kV cm<sup>−1</sup>), and a very high breakdown field of 5.5 MV cm<sup>−1</sup>. The results of this study suggest that aerosol-deposited Ga<sub>2</sub>O<sub>3</sub> layers have great potential to enable power switches with reliable switching.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh Breakdown Field in Gallium (III) Oxide Dielectric Structure Fabricated by Novel Aerosol Deposition Method\",\"authors\":\"Jun-Woo Lee, Jong Ho Won, Woosup Kim, Jwa-Bin Jeon, Myung-Yeon Cho, Sunghoon Kim, Minkyung Kim, Chulhwan Park, Weon Ho Shin, Kanghee Won, Sang-Mo Koo, Jong-Min Oh\",\"doi\":\"10.1002/sstr.202400321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing demand for modern high-voltage electronic devices in electric vehicles and renewable-energy systems, power semiconductor devices with high breakdown fields are becoming essential. β-Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>), which has a theoretical breakdown field of 8 MV cm<sup>−1</sup>, is being studied as a next-generation power-switch material. However, realizing a breakdown field close to this theoretical value remains challenging. In this study, an aerosol deposition-manufactured Ga<sub>2</sub>O<sub>3</sub> film boasting an extremely high breakdown field, achieved through thickness optimization, heat treatment, and a unique nozzle-tilting method, is developed. This study explores the effect of oxygen vacancies on the dielectric constant, breakdown field, and microstructure of Ga<sub>2</sub>O<sub>3</sub> films. Through these methods, Ga<sub>2</sub>O<sub>3</sub> films with a denser (98.88%) and uniform surface, made less affected by oxygen vacancies through nozzle tilting and post-annealing at 800 °C, are produced, resulting in appropriate dielectric constants (9.3 at 10 kHz), low leakage currents (5.8 × 10<sup>−11 </sup>A cm<sup>−2</sup> at 20 kV cm<sup>−1</sup>), and a very high breakdown field of 5.5 MV cm<sup>−1</sup>. The results of this study suggest that aerosol-deposited Ga<sub>2</sub>O<sub>3</sub> layers have great potential to enable power switches with reliable switching.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202400321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrahigh Breakdown Field in Gallium (III) Oxide Dielectric Structure Fabricated by Novel Aerosol Deposition Method
With the increasing demand for modern high-voltage electronic devices in electric vehicles and renewable-energy systems, power semiconductor devices with high breakdown fields are becoming essential. β-Gallium oxide (Ga2O3), which has a theoretical breakdown field of 8 MV cm−1, is being studied as a next-generation power-switch material. However, realizing a breakdown field close to this theoretical value remains challenging. In this study, an aerosol deposition-manufactured Ga2O3 film boasting an extremely high breakdown field, achieved through thickness optimization, heat treatment, and a unique nozzle-tilting method, is developed. This study explores the effect of oxygen vacancies on the dielectric constant, breakdown field, and microstructure of Ga2O3 films. Through these methods, Ga2O3 films with a denser (98.88%) and uniform surface, made less affected by oxygen vacancies through nozzle tilting and post-annealing at 800 °C, are produced, resulting in appropriate dielectric constants (9.3 at 10 kHz), low leakage currents (5.8 × 10−11 A cm−2 at 20 kV cm−1), and a very high breakdown field of 5.5 MV cm−1. The results of this study suggest that aerosol-deposited Ga2O3 layers have great potential to enable power switches with reliable switching.