利用缓慢热解技术从骆驼刺植物中生产生物油并确定其特性

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Dina Aboelela, Habibatallah Saleh, Attia M. Attia, Y. Elhenawy, Thokozani Majozi, M. Bassyouni
{"title":"利用缓慢热解技术从骆驼刺植物中生产生物油并确定其特性","authors":"Dina Aboelela,&nbsp;Habibatallah Saleh,&nbsp;Attia M. Attia,&nbsp;Y. Elhenawy,&nbsp;Thokozani Majozi,&nbsp;M. Bassyouni","doi":"10.1007/s10973-024-13551-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, slow pyrolysis of the camelthorn plant process was conducted to produce bio-oil, biochar, and gas. The pyrolysis process was conducted between 400 and 550 °C under pressure 10 bar using a fixed bed reactor. The pyrolysis products were bio-oil, biogas, and biochar. These products were characterized using Fourier-transform infrared (FT-IR) model, gas analyzer, chromatographic analysis using GC–MS, and thermogravimetric analysis (TGA). The GC–MS results demonstrated composition of bio-oil, detecting several organic substances including levoglucosan, furan, acetic acid, phenol, and long-chain hydrocarbon. To further understand the chemical composition of bio-oil, FT-IR spectroscopy was conducted to determine functional groups. The thermal behavior and degradation of the camelthorn sample were studied using TGA which provided thermal stability and prospective applications. Gas composition was measured using a gas analyzer. These analytical methods’ results offer insight on the camelthorn plant’s potential as a sustainable bio-oil and biochar sources, and these findings contribute to the advancement of biomass conversion expertise and provide vital insights for sustainable energy production.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production and characterization of bio-oil from camelthorn plant using slow pyrolysis\",\"authors\":\"Dina Aboelela,&nbsp;Habibatallah Saleh,&nbsp;Attia M. Attia,&nbsp;Y. Elhenawy,&nbsp;Thokozani Majozi,&nbsp;M. Bassyouni\",\"doi\":\"10.1007/s10973-024-13551-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, slow pyrolysis of the camelthorn plant process was conducted to produce bio-oil, biochar, and gas. The pyrolysis process was conducted between 400 and 550 °C under pressure 10 bar using a fixed bed reactor. The pyrolysis products were bio-oil, biogas, and biochar. These products were characterized using Fourier-transform infrared (FT-IR) model, gas analyzer, chromatographic analysis using GC–MS, and thermogravimetric analysis (TGA). The GC–MS results demonstrated composition of bio-oil, detecting several organic substances including levoglucosan, furan, acetic acid, phenol, and long-chain hydrocarbon. To further understand the chemical composition of bio-oil, FT-IR spectroscopy was conducted to determine functional groups. The thermal behavior and degradation of the camelthorn sample were studied using TGA which provided thermal stability and prospective applications. Gas composition was measured using a gas analyzer. These analytical methods’ results offer insight on the camelthorn plant’s potential as a sustainable bio-oil and biochar sources, and these findings contribute to the advancement of biomass conversion expertise and provide vital insights for sustainable energy production.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13551-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13551-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究对骆驼刺植物进行了缓慢热解,以生产生物油、生物炭和气体。热解过程在固定床反应器中进行,温度为 400 至 550 °C,压力为 10 巴。热解产物为生物油、沼气和生物炭。使用傅立叶变换红外(FT-IR)模型、气体分析仪、气相色谱-质谱(GC-MS)色谱分析和热重分析(TGA)对这些产物进行了表征。气相色谱-质谱分析结果表明了生物油的成分,检测到多种有机物质,包括左旋葡聚糖、呋喃、乙酸、苯酚和长链烃。为了进一步了解生物油的化学成分,还进行了傅立叶变换红外光谱分析以确定官能团。使用 TGA 研究了骆驼刺样品的热行为和降解情况,该方法提供了热稳定性和应用前景。使用气体分析仪测量了气体成分。这些分析方法的结果有助于深入了解骆驼刺植物作为可持续生物油和生物炭来源的潜力,这些发现有助于生物质转化专业知识的发展,并为可持续能源生产提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Production and characterization of bio-oil from camelthorn plant using slow pyrolysis

Production and characterization of bio-oil from camelthorn plant using slow pyrolysis

Production and characterization of bio-oil from camelthorn plant using slow pyrolysis

In this study, slow pyrolysis of the camelthorn plant process was conducted to produce bio-oil, biochar, and gas. The pyrolysis process was conducted between 400 and 550 °C under pressure 10 bar using a fixed bed reactor. The pyrolysis products were bio-oil, biogas, and biochar. These products were characterized using Fourier-transform infrared (FT-IR) model, gas analyzer, chromatographic analysis using GC–MS, and thermogravimetric analysis (TGA). The GC–MS results demonstrated composition of bio-oil, detecting several organic substances including levoglucosan, furan, acetic acid, phenol, and long-chain hydrocarbon. To further understand the chemical composition of bio-oil, FT-IR spectroscopy was conducted to determine functional groups. The thermal behavior and degradation of the camelthorn sample were studied using TGA which provided thermal stability and prospective applications. Gas composition was measured using a gas analyzer. These analytical methods’ results offer insight on the camelthorn plant’s potential as a sustainable bio-oil and biochar sources, and these findings contribute to the advancement of biomass conversion expertise and provide vital insights for sustainable energy production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信