潜在组合游戏设计

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Anurag Sarkar;Seth Cooper
{"title":"潜在组合游戏设计","authors":"Anurag Sarkar;Seth Cooper","doi":"10.1109/TG.2023.3346331","DOIUrl":null,"url":null,"abstract":"We present \n<italic>latent combinational game design</i>\n—an approach for generating playable games that blend a given set of games in a desired combination using deep generative latent variable models. We use Gaussian mixture variational autoencoders (GMVAEs), which model the VAE latent space via a mixture of Gaussian components. Through supervised training, each component encodes levels from one game and lets us define blended games as linear combinations of these components. This enables generating new games that blend the input games as well as controlling the relative proportions of each game in the blend. We also extend prior blending work using conditional VAEs and compare against the GMVAE and additionally introduce a hybrid conditional GMVAE architecture, which lets us generate whole blended levels and layouts. Results show that these approaches can generate playable games that blend the input games in specified combinations. We use both platformers and dungeon-based games to demonstrate our results.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"659-669"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Combinational Game Design\",\"authors\":\"Anurag Sarkar;Seth Cooper\",\"doi\":\"10.1109/TG.2023.3346331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present \\n<italic>latent combinational game design</i>\\n—an approach for generating playable games that blend a given set of games in a desired combination using deep generative latent variable models. We use Gaussian mixture variational autoencoders (GMVAEs), which model the VAE latent space via a mixture of Gaussian components. Through supervised training, each component encodes levels from one game and lets us define blended games as linear combinations of these components. This enables generating new games that blend the input games as well as controlling the relative proportions of each game in the blend. We also extend prior blending work using conditional VAEs and compare against the GMVAE and additionally introduce a hybrid conditional GMVAE architecture, which lets us generate whole blended levels and layouts. Results show that these approaches can generate playable games that blend the input games in specified combinations. We use both platformers and dungeon-based games to demonstrate our results.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"16 3\",\"pages\":\"659-669\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10373177/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10373177/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了潜变量组合游戏设计--一种利用深度生成潜变量模型生成可玩游戏的方法,该方法将一组给定的游戏按所需组合进行混合。我们使用高斯混合变异自动编码器(GMVAE),它通过高斯成分的混合来为 VAE 潜在空间建模。通过有监督的训练,每个分量都能编码一个游戏的关卡,让我们可以将混合游戏定义为这些分量的线性组合。这样就能生成混合输入游戏的新游戏,并控制混合游戏中每个游戏的相对比例。我们还扩展了之前使用条件 VAE 进行的混合工作,并与 GMVAE 进行了比较,此外还引入了混合条件 GMVAE(CGMVAE)架构,使我们能够生成整个混合关卡和布局。结果表明,这些方法可以生成可玩的游戏,并以指定的组合混合输入游戏。我们使用平台游戏和基于地下城的游戏来展示我们的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Combinational Game Design
We present latent combinational game design —an approach for generating playable games that blend a given set of games in a desired combination using deep generative latent variable models. We use Gaussian mixture variational autoencoders (GMVAEs), which model the VAE latent space via a mixture of Gaussian components. Through supervised training, each component encodes levels from one game and lets us define blended games as linear combinations of these components. This enables generating new games that blend the input games as well as controlling the relative proportions of each game in the blend. We also extend prior blending work using conditional VAEs and compare against the GMVAE and additionally introduce a hybrid conditional GMVAE architecture, which lets us generate whole blended levels and layouts. Results show that these approaches can generate playable games that blend the input games in specified combinations. We use both platformers and dungeon-based games to demonstrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信