通过高阶边带产生可调谐紫外线 ∼ 红外线频率梳

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Jeail Kim, Hwihyeon Kang, Ugaitz Elu, Dasol Kim, Florian Haberstroh, Themistoklis Sidiropoulos, Tobias Steinle, Matthias Baudisch, Lisa Ortmann, Alexandra S. Landsman, Jens Biegert, Alexis Chacón, Dong Eon Kim
{"title":"通过高阶边带产生可调谐紫外线 ∼ 红外线频率梳","authors":"Jeail Kim, Hwihyeon Kang, Ugaitz Elu, Dasol Kim, Florian Haberstroh, Themistoklis Sidiropoulos, Tobias Steinle, Matthias Baudisch, Lisa Ortmann, Alexandra S. Landsman, Jens Biegert, Alexis Chacón, Dong Eon Kim","doi":"10.35848/1347-4065/ad68f1","DOIUrl":null,"url":null,"abstract":"We propose the generation of a widely tunable UV-to-IR frequency comb by high-order sideband generation (HSB) spectrum emitted from semiconductors. In our theoretical simulations, we demonstrate the high-order sideband signals of two series (2<italic toggle=\"yes\">m</italic>\n<inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{\\Omega }}}_{\\mathrm{seed}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> + (2<italic toggle=\"yes\">n</italic> + 1)<inline-formula>\n<tex-math>\n<?CDATA ${\\omega }_{\\mathrm{driver}},$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi>ω</mml:mi><mml:mi>driver</mml:mi></mml:msub><mml:mo>,</mml:mo></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and (2<italic toggle=\"yes\">m</italic> + 1)<inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{\\Omega }}}_{\\mathrm{seed}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi mathvariant=\"normal\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> + 2<inline-formula>\n<tex-math>\n<?CDATA $n{\\omega }_{\\mathrm{driver}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>n</mml:mi><mml:msub><mml:mi>ω</mml:mi><mml:mi>driver</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>), where <italic toggle=\"yes\">m</italic> and <italic toggle=\"yes\">n</italic> are integers of a seed pulse and a driver laser frequency, respectively. The simulations also reveal the intensity of HSB scale with the driver laser power, both perturbatively and non-perturbatively. We find that the harmonic position and spacing of the high-order sideband emission can be controlled by varying the seed pulse and driver photon energies. In the experiment, we applied a visible (<inline-formula>\n<tex-math>\n<?CDATA ${\\rm{\\hslash }}{{\\rm{\\Omega }}}_{\\mathrm{seed}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"normal\">ℏ</mml:mi><mml:msub><mml:mi mathvariant=\"normal\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> = 3.1 eV, ∼400 nm) seed pulse and mid-infrared (MIR, <inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{\\hslash }}\\omega }_{\\mathrm{driver}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">ℏ</mml:mi><mml:mi>ω</mml:mi></mml:mrow><mml:mi>driver</mml:mi></mml:msub></mml:math>\n<inline-graphic xlink:href=\"jjapad68f1ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> = 0.4 eV, 3.1 μm) driver pulses to ZnSe target. Our experimental observations confirmed the UV (4.7 eV, 263 nm and 3.9 eV, 317 nm) HSB generation.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"70 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable UV ∼ IR frequency comb generation via high-order sideband generation\",\"authors\":\"Jeail Kim, Hwihyeon Kang, Ugaitz Elu, Dasol Kim, Florian Haberstroh, Themistoklis Sidiropoulos, Tobias Steinle, Matthias Baudisch, Lisa Ortmann, Alexandra S. Landsman, Jens Biegert, Alexis Chacón, Dong Eon Kim\",\"doi\":\"10.35848/1347-4065/ad68f1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the generation of a widely tunable UV-to-IR frequency comb by high-order sideband generation (HSB) spectrum emitted from semiconductors. In our theoretical simulations, we demonstrate the high-order sideband signals of two series (2<italic toggle=\\\"yes\\\">m</italic>\\n<inline-formula>\\n<tex-math>\\n<?CDATA ${{\\\\rm{\\\\Omega }}}_{\\\\mathrm{seed}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"jjapad68f1ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> + (2<italic toggle=\\\"yes\\\">n</italic> + 1)<inline-formula>\\n<tex-math>\\n<?CDATA ${\\\\omega }_{\\\\mathrm{driver}},$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mi>ω</mml:mi><mml:mi>driver</mml:mi></mml:msub><mml:mo>,</mml:mo></mml:math>\\n<inline-graphic xlink:href=\\\"jjapad68f1ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and (2<italic toggle=\\\"yes\\\">m</italic> + 1)<inline-formula>\\n<tex-math>\\n<?CDATA ${{\\\\rm{\\\\Omega }}}_{\\\\mathrm{seed}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"jjapad68f1ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> + 2<inline-formula>\\n<tex-math>\\n<?CDATA $n{\\\\omega }_{\\\\mathrm{driver}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>n</mml:mi><mml:msub><mml:mi>ω</mml:mi><mml:mi>driver</mml:mi></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"jjapad68f1ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>), where <italic toggle=\\\"yes\\\">m</italic> and <italic toggle=\\\"yes\\\">n</italic> are integers of a seed pulse and a driver laser frequency, respectively. The simulations also reveal the intensity of HSB scale with the driver laser power, both perturbatively and non-perturbatively. We find that the harmonic position and spacing of the high-order sideband emission can be controlled by varying the seed pulse and driver photon energies. In the experiment, we applied a visible (<inline-formula>\\n<tex-math>\\n<?CDATA ${\\\\rm{\\\\hslash }}{{\\\\rm{\\\\Omega }}}_{\\\\mathrm{seed}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi mathvariant=\\\"normal\\\">ℏ</mml:mi><mml:msub><mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi><mml:mi>seed</mml:mi></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"jjapad68f1ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> = 3.1 eV, ∼400 nm) seed pulse and mid-infrared (MIR, <inline-formula>\\n<tex-math>\\n<?CDATA ${{\\\\rm{\\\\hslash }}\\\\omega }_{\\\\mathrm{driver}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi mathvariant=\\\"normal\\\">ℏ</mml:mi><mml:mi>ω</mml:mi></mml:mrow><mml:mi>driver</mml:mi></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"jjapad68f1ieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> = 0.4 eV, 3.1 μm) driver pulses to ZnSe target. Our experimental observations confirmed the UV (4.7 eV, 263 nm and 3.9 eV, 317 nm) HSB generation.\",\"PeriodicalId\":14741,\"journal\":{\"name\":\"Japanese Journal of Applied Physics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.35848/1347-4065/ad68f1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad68f1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了利用半导体发射的高阶边带生成(HSB)频谱生成可广泛调谐的紫外-红外频梳的方法。在理论模拟中,我们展示了两个系列(2mΩ种子 + (2n + 1)ω 驱动器和 (2m + 1)Ω 种子 + 2nω驱动器)的高阶边带信号,其中 m 和 n 分别是种子脉冲和驱动激光频率的整数。模拟还揭示了 HSB 的强度随驱动激光功率的变化而变化,包括扰动和非扰动两种情况。我们发现,高阶边带发射的谐波位置和间距可以通过改变种子脉冲和驱动光子能量来控制。在实验中,我们将可见光(ℏωseed = 3.1 eV, ∼400 nm)种子脉冲和中红外(MIR, ℏωdriver = 0.4 eV, 3.1 μm)驱动脉冲应用于 ZnSe 靶。我们的实验观察证实了紫外(4.7 eV,263 nm 和 3.9 eV,317 nm)HSB 的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable UV ∼ IR frequency comb generation via high-order sideband generation
We propose the generation of a widely tunable UV-to-IR frequency comb by high-order sideband generation (HSB) spectrum emitted from semiconductors. In our theoretical simulations, we demonstrate the high-order sideband signals of two series (2m Ωseed  + (2n + 1) ωdriver, and (2m + 1) Ωseed  + 2 nωdriver ), where m and n are integers of a seed pulse and a driver laser frequency, respectively. The simulations also reveal the intensity of HSB scale with the driver laser power, both perturbatively and non-perturbatively. We find that the harmonic position and spacing of the high-order sideband emission can be controlled by varying the seed pulse and driver photon energies. In the experiment, we applied a visible ( Ωseed  = 3.1 eV, ∼400 nm) seed pulse and mid-infrared (MIR, ωdriver = 0.4 eV, 3.1 μm) driver pulses to ZnSe target. Our experimental observations confirmed the UV (4.7 eV, 263 nm and 3.9 eV, 317 nm) HSB generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Japanese Journal of Applied Physics
Japanese Journal of Applied Physics 物理-物理:应用
CiteScore
3.00
自引率
26.70%
发文量
818
审稿时长
3.5 months
期刊介绍: The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP). JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields: • Semiconductors, dielectrics, and organic materials • Photonics, quantum electronics, optics, and spectroscopy • Spintronics, superconductivity, and strongly correlated materials • Device physics including quantum information processing • Physics-based circuits and systems • Nanoscale science and technology • Crystal growth, surfaces, interfaces, thin films, and bulk materials • Plasmas, applied atomic and molecular physics, and applied nuclear physics • Device processing, fabrication and measurement technologies, and instrumentation • Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信