Weiming Hu, Xu Li, Jinchao Hu, Yan Liu, Jinying Zhou
{"title":"基于深度强化学习的综合驾驶决策方法,适用于自动驾驶商用车辆","authors":"Weiming Hu, Xu Li, Jinchao Hu, Yan Liu, Jinying Zhou","doi":"10.1007/s12239-024-00135-2","DOIUrl":null,"url":null,"abstract":"<p>Effective driving decision-making significantly enhances the safety of automated commercial vehicles. Different from small passenger vehicles mainly focusing on anti-collision, the inducements of collision and rollover for commercial vehicles are coupled with each other. However, these factors are not considered together which results in a limitation in the safety performance. This paper proposes a novel comprehensive driving decision-making methodology based on deep reinforcement learning (CDDM-DRL) for automated commercial vehicles in expressway scenarios. The CDDM-DRL consists of two parts. First, a feature encoding network is designed to encode hierarchical features from traffic situations and driving conditions, which can provide more useful feature information. Then an actor–critic network incorporating ensemble methods is developed to learn and provide effective driving actions, such as whether to turn and when to turn. Finally, extensive simulations in common and challenging scenarios with different traffic densities were performed. Experimental results show that our proposed method is better than some classical DRL methods in terms of time headway, backward clearance, lateral acceleration, etc. Moreover, it can prevent collision and rollover simultaneously, and realize safe driving decision-making for automated commercial vehicles.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Driving Decision-Making Methodology Based on Deep Reinforcement Learning for Automated Commercial Vehicles\",\"authors\":\"Weiming Hu, Xu Li, Jinchao Hu, Yan Liu, Jinying Zhou\",\"doi\":\"10.1007/s12239-024-00135-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effective driving decision-making significantly enhances the safety of automated commercial vehicles. Different from small passenger vehicles mainly focusing on anti-collision, the inducements of collision and rollover for commercial vehicles are coupled with each other. However, these factors are not considered together which results in a limitation in the safety performance. This paper proposes a novel comprehensive driving decision-making methodology based on deep reinforcement learning (CDDM-DRL) for automated commercial vehicles in expressway scenarios. The CDDM-DRL consists of two parts. First, a feature encoding network is designed to encode hierarchical features from traffic situations and driving conditions, which can provide more useful feature information. Then an actor–critic network incorporating ensemble methods is developed to learn and provide effective driving actions, such as whether to turn and when to turn. Finally, extensive simulations in common and challenging scenarios with different traffic densities were performed. Experimental results show that our proposed method is better than some classical DRL methods in terms of time headway, backward clearance, lateral acceleration, etc. Moreover, it can prevent collision and rollover simultaneously, and realize safe driving decision-making for automated commercial vehicles.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00135-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00135-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A Comprehensive Driving Decision-Making Methodology Based on Deep Reinforcement Learning for Automated Commercial Vehicles
Effective driving decision-making significantly enhances the safety of automated commercial vehicles. Different from small passenger vehicles mainly focusing on anti-collision, the inducements of collision and rollover for commercial vehicles are coupled with each other. However, these factors are not considered together which results in a limitation in the safety performance. This paper proposes a novel comprehensive driving decision-making methodology based on deep reinforcement learning (CDDM-DRL) for automated commercial vehicles in expressway scenarios. The CDDM-DRL consists of two parts. First, a feature encoding network is designed to encode hierarchical features from traffic situations and driving conditions, which can provide more useful feature information. Then an actor–critic network incorporating ensemble methods is developed to learn and provide effective driving actions, such as whether to turn and when to turn. Finally, extensive simulations in common and challenging scenarios with different traffic densities were performed. Experimental results show that our proposed method is better than some classical DRL methods in terms of time headway, backward clearance, lateral acceleration, etc. Moreover, it can prevent collision and rollover simultaneously, and realize safe driving decision-making for automated commercial vehicles.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.