低负荷条件下各种缸径-冲程比对可变气门正时氢气直喷火花点火发动机的影响

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Ki Yeon Kim, Seung-il Lee, Seung Hyun Lee, Seung Jae Kim, Kyoung Doug Min, Jeong Woo Lee
{"title":"低负荷条件下各种缸径-冲程比对可变气门正时氢气直喷火花点火发动机的影响","authors":"Ki Yeon Kim, Seung-il Lee, Seung Hyun Lee, Seung Jae Kim, Kyoung Doug Min, Jeong Woo Lee","doi":"10.1007/s12239-024-00142-3","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effects of various bore–stroke (S/B) ratios on the combustion characteristics, energy fractions, and performance of a hydrogen direct injection spark ignition engine equipped with a variable valve timing (VVT) system under low-load conditions. The experiments were conducted at S/B ratios of 1.0, 1.2, and 1.47 while maintaining a fixed displacement volume and compression ratio. The energy budget analysis focused on heat transfer loss, combustion loss, and exhaust loss to determine their effects on gross work. The results showed that as the S/B ratio increased, heat transfer loss increased due to enhanced piston speed and in-cylinder mixing, resulting in faster combustion. Combustion loss was highest at an S/B ratio 1.0 due to longer combustion duration. In contrast, exhaust loss did not show a clear trend with varying S/B ratios. The effects of fuel injection timing and excess air ratio on engine performance and emissions were investigated. The findings of this study suggest that optimizing the S/B ratio, fuel injection timing, and excess air ratio can significantly improve the thermal efficiency and emission characteristics of hydrogen engines, providing practical insights for the design and development of future hydrogen engine technologies.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"10 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Various Bore–Stroke Ratios on Hydrogen Direct Injection Spark Ignition Engines With Variable Valve Timing Under Low-Load Conditions\",\"authors\":\"Ki Yeon Kim, Seung-il Lee, Seung Hyun Lee, Seung Jae Kim, Kyoung Doug Min, Jeong Woo Lee\",\"doi\":\"10.1007/s12239-024-00142-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the effects of various bore–stroke (S/B) ratios on the combustion characteristics, energy fractions, and performance of a hydrogen direct injection spark ignition engine equipped with a variable valve timing (VVT) system under low-load conditions. The experiments were conducted at S/B ratios of 1.0, 1.2, and 1.47 while maintaining a fixed displacement volume and compression ratio. The energy budget analysis focused on heat transfer loss, combustion loss, and exhaust loss to determine their effects on gross work. The results showed that as the S/B ratio increased, heat transfer loss increased due to enhanced piston speed and in-cylinder mixing, resulting in faster combustion. Combustion loss was highest at an S/B ratio 1.0 due to longer combustion duration. In contrast, exhaust loss did not show a clear trend with varying S/B ratios. The effects of fuel injection timing and excess air ratio on engine performance and emissions were investigated. The findings of this study suggest that optimizing the S/B ratio, fuel injection timing, and excess air ratio can significantly improve the thermal efficiency and emission characteristics of hydrogen engines, providing practical insights for the design and development of future hydrogen engine technologies.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00142-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00142-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了不同缸径-行程(S/B)比对配备可变气门正时(VVT)系统的氢气直喷火花点火发动机在低负荷条件下的燃烧特性、能量分数和性能的影响。实验是在 S/B:1.0、1.2 和 1.47 时进行的,同时保持固定的排量和压缩比。能量预算分析的重点是传热损失、燃烧损失和排气损失,以确定它们对总功的影响。结果表明,随着 S/B 比率的增加,由于活塞速度和气缸内混合的增强,导致燃烧速度加快,传热损失也随之增加。由于燃烧持续时间较长,S/B 比为 1.0 时的燃烧损失最大。相比之下,排气损失并没有随着 S/B 比的变化而呈现明显的趋势。研究还调查了燃油喷射正时和过量空气比率对发动机性能和排放的影响。研究结果表明,优化 S/B 比、燃料喷射正时和过量空气比可以显著提高氢气发动机的热效率和排放特性,为未来氢气发动机技术的设计和开发提供了实用的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Various Bore–Stroke Ratios on Hydrogen Direct Injection Spark Ignition Engines With Variable Valve Timing Under Low-Load Conditions

Effects of Various Bore–Stroke Ratios on Hydrogen Direct Injection Spark Ignition Engines With Variable Valve Timing Under Low-Load Conditions

This study investigates the effects of various bore–stroke (S/B) ratios on the combustion characteristics, energy fractions, and performance of a hydrogen direct injection spark ignition engine equipped with a variable valve timing (VVT) system under low-load conditions. The experiments were conducted at S/B ratios of 1.0, 1.2, and 1.47 while maintaining a fixed displacement volume and compression ratio. The energy budget analysis focused on heat transfer loss, combustion loss, and exhaust loss to determine their effects on gross work. The results showed that as the S/B ratio increased, heat transfer loss increased due to enhanced piston speed and in-cylinder mixing, resulting in faster combustion. Combustion loss was highest at an S/B ratio 1.0 due to longer combustion duration. In contrast, exhaust loss did not show a clear trend with varying S/B ratios. The effects of fuel injection timing and excess air ratio on engine performance and emissions were investigated. The findings of this study suggest that optimizing the S/B ratio, fuel injection timing, and excess air ratio can significantly improve the thermal efficiency and emission characteristics of hydrogen engines, providing practical insights for the design and development of future hydrogen engine technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信