{"title":"用于可靠安全解决方案的无掺杂 PUF 中的硅老化效应研究","authors":"Meena Panchore, Chithraja Rajan, Jawar Singh","doi":"10.1007/s10836-024-06130-w","DOIUrl":null,"url":null,"abstract":"<p>Dopingless (DLFET) provides better reliability against any physically doped devices. Hence, this paper aims to provide a fair comparison between conventional junctionless (JLFET) and DLFET based ring oscillator (RO) physical unclonable function (PUF) that would lead to a better security solution against any aging constraints. To include aging challenges in our simulation, we stressed conventional JLFET and DLFET against channel hot carrier (CHC) and bias temperature instability (BTI) for 2000 secs. The maximum drain current deviation obtained in JLFET is 20.7 % and that of DLFET is 16 %. Hence, DLFET has more resistance against aging rollbacks than JLFET. Further, 256 staged DL-RO-PUF and JL-RO-PUF are implemented and it is observed that a DL-RO has 60 % better oscillating frequency as compared to a JL-RO. Also, we found that the DL-RO-PUF produce more unique keys than JL-RO-PUF as the inter hamming distance (HD) is 46.9 % for former and 44.6 % for later during normal working conditions. Also, we found that DL-RO-PUF is more reliable than JL-RO-PUF as the maximum intra-HD of former is 3.23 % and of later is 3.66 %. Hence, the novelty of this work is to introduce a highly unique and reliable security solution that helps to provide sustainable electronic systems.</p>","PeriodicalId":501485,"journal":{"name":"Journal of Electronic Testing","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Silicon Aging Effects in Dopingless PUF for Reliable Security Solution\",\"authors\":\"Meena Panchore, Chithraja Rajan, Jawar Singh\",\"doi\":\"10.1007/s10836-024-06130-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dopingless (DLFET) provides better reliability against any physically doped devices. Hence, this paper aims to provide a fair comparison between conventional junctionless (JLFET) and DLFET based ring oscillator (RO) physical unclonable function (PUF) that would lead to a better security solution against any aging constraints. To include aging challenges in our simulation, we stressed conventional JLFET and DLFET against channel hot carrier (CHC) and bias temperature instability (BTI) for 2000 secs. The maximum drain current deviation obtained in JLFET is 20.7 % and that of DLFET is 16 %. Hence, DLFET has more resistance against aging rollbacks than JLFET. Further, 256 staged DL-RO-PUF and JL-RO-PUF are implemented and it is observed that a DL-RO has 60 % better oscillating frequency as compared to a JL-RO. Also, we found that the DL-RO-PUF produce more unique keys than JL-RO-PUF as the inter hamming distance (HD) is 46.9 % for former and 44.6 % for later during normal working conditions. Also, we found that DL-RO-PUF is more reliable than JL-RO-PUF as the maximum intra-HD of former is 3.23 % and of later is 3.66 %. Hence, the novelty of this work is to introduce a highly unique and reliable security solution that helps to provide sustainable electronic systems.</p>\",\"PeriodicalId\":501485,\"journal\":{\"name\":\"Journal of Electronic Testing\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10836-024-06130-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10836-024-06130-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Silicon Aging Effects in Dopingless PUF for Reliable Security Solution
Dopingless (DLFET) provides better reliability against any physically doped devices. Hence, this paper aims to provide a fair comparison between conventional junctionless (JLFET) and DLFET based ring oscillator (RO) physical unclonable function (PUF) that would lead to a better security solution against any aging constraints. To include aging challenges in our simulation, we stressed conventional JLFET and DLFET against channel hot carrier (CHC) and bias temperature instability (BTI) for 2000 secs. The maximum drain current deviation obtained in JLFET is 20.7 % and that of DLFET is 16 %. Hence, DLFET has more resistance against aging rollbacks than JLFET. Further, 256 staged DL-RO-PUF and JL-RO-PUF are implemented and it is observed that a DL-RO has 60 % better oscillating frequency as compared to a JL-RO. Also, we found that the DL-RO-PUF produce more unique keys than JL-RO-PUF as the inter hamming distance (HD) is 46.9 % for former and 44.6 % for later during normal working conditions. Also, we found that DL-RO-PUF is more reliable than JL-RO-PUF as the maximum intra-HD of former is 3.23 % and of later is 3.66 %. Hence, the novelty of this work is to introduce a highly unique and reliable security solution that helps to provide sustainable electronic systems.