预测大数据和学习时代的全球股票收益分布

Jozef Barunik, Martin Hronec, Ondrej Tobek
{"title":"预测大数据和学习时代的全球股票收益分布","authors":"Jozef Barunik, Martin Hronec, Ondrej Tobek","doi":"arxiv-2408.07497","DOIUrl":null,"url":null,"abstract":"This paper presents a method for accurately predicting the full distribution\nof stock returns, given a comprehensive set of 194 stock characteristics and\nmarket variables. Such distributions, learned from rich data using a machine\nlearning algorithm, are not constrained by restrictive model assumptions and\nallow the exploration of non-Gaussian, heavy-tailed data and their non-linear\ninteractions. The method uses a two-stage quantile neural network combined with\nspline interpolation. The results show that the proposed approach outperforms\nalternative models in terms of out-of-sample losses. Furthermore, we show that\nthe moments derived from such distributions can be useful as alternative\nempirical estimates in many cases, including mean estimation and forecasting.\nFinally, we examine the relationship between cross-sectional returns and\nseveral distributional characteristics. The results are robust to a wide range\nof US and international data.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the distributions of stock returns around the globe in the era of big data and learning\",\"authors\":\"Jozef Barunik, Martin Hronec, Ondrej Tobek\",\"doi\":\"arxiv-2408.07497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for accurately predicting the full distribution\\nof stock returns, given a comprehensive set of 194 stock characteristics and\\nmarket variables. Such distributions, learned from rich data using a machine\\nlearning algorithm, are not constrained by restrictive model assumptions and\\nallow the exploration of non-Gaussian, heavy-tailed data and their non-linear\\ninteractions. The method uses a two-stage quantile neural network combined with\\nspline interpolation. The results show that the proposed approach outperforms\\nalternative models in terms of out-of-sample losses. Furthermore, we show that\\nthe moments derived from such distributions can be useful as alternative\\nempirical estimates in many cases, including mean estimation and forecasting.\\nFinally, we examine the relationship between cross-sectional returns and\\nseveral distributional characteristics. The results are robust to a wide range\\nof US and international data.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种方法,可以在给出 194 种股票特征和市场变量的综合集合的情况下,准确预测股票收益的完整分布。这种分布是利用机器学习算法从丰富的数据中学习出来的,不受限制性模型假设的约束,允许探索非高斯、重尾数据及其非线性相互作用。该方法使用两阶段量化神经网络,并结合了样条插值法。结果表明,所提出的方法在样本外损失方面优于其他模型。此外,我们还表明,在包括均值估计和预测在内的许多情况下,从这种分布中得出的矩可以作为替代的经验估计值。最后,我们研究了横截面收益率与分布特征之间的关系。这些结果对广泛的美国和国际数据都是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the distributions of stock returns around the globe in the era of big data and learning
This paper presents a method for accurately predicting the full distribution of stock returns, given a comprehensive set of 194 stock characteristics and market variables. Such distributions, learned from rich data using a machine learning algorithm, are not constrained by restrictive model assumptions and allow the exploration of non-Gaussian, heavy-tailed data and their non-linear interactions. The method uses a two-stage quantile neural network combined with spline interpolation. The results show that the proposed approach outperforms alternative models in terms of out-of-sample losses. Furthermore, we show that the moments derived from such distributions can be useful as alternative empirical estimates in many cases, including mean estimation and forecasting. Finally, we examine the relationship between cross-sectional returns and several distributional characteristics. The results are robust to a wide range of US and international data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信