有交易成本的跳跃扩散模型中的套期保值

Hamidreza Maleki Almani, Foad Shokrollahi, Tommi Sottinen
{"title":"有交易成本的跳跃扩散模型中的套期保值","authors":"Hamidreza Maleki Almani, Foad Shokrollahi, Tommi Sottinen","doi":"arxiv-2408.10785","DOIUrl":null,"url":null,"abstract":"We consider the jump-diffusion risky asset model and study its conditional\nprediction laws. Next, we explain the conditional least square hedging strategy\nand calculate its closed form for the jump-diffusion model, considering the\nBlack-Scholes framework with interpretations related to investor priorities and\ntransaction costs. We investigate the explicit form of this result for the\nparticular case of the European call option under transaction costs and\nformulate recursive hedging strategies. Finally, we present a decision tree,\ntable of values, and figures to support our results.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"421 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hedging in Jump Diffusion Model with Transaction Costs\",\"authors\":\"Hamidreza Maleki Almani, Foad Shokrollahi, Tommi Sottinen\",\"doi\":\"arxiv-2408.10785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the jump-diffusion risky asset model and study its conditional\\nprediction laws. Next, we explain the conditional least square hedging strategy\\nand calculate its closed form for the jump-diffusion model, considering the\\nBlack-Scholes framework with interpretations related to investor priorities and\\ntransaction costs. We investigate the explicit form of this result for the\\nparticular case of the European call option under transaction costs and\\nformulate recursive hedging strategies. Finally, we present a decision tree,\\ntable of values, and figures to support our results.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"421 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了跳跃-扩散风险资产模型,并研究了其条件预测法则。接着,我们解释了条件最小平方对冲策略,并计算了其在跳跃扩散模型中的封闭形式,同时考虑了与投资者优先权和交易成本相关的解释的布莱克-斯科尔斯(Black-Scholes)框架。我们针对交易成本下的欧式看涨期权这一特殊情况,研究了这一结果的显式形式,并制定了递归对冲策略。最后,我们提出了一个决策树、价值表和图表来支持我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hedging in Jump Diffusion Model with Transaction Costs
We consider the jump-diffusion risky asset model and study its conditional prediction laws. Next, we explain the conditional least square hedging strategy and calculate its closed form for the jump-diffusion model, considering the Black-Scholes framework with interpretations related to investor priorities and transaction costs. We investigate the explicit form of this result for the particular case of the European call option under transaction costs and formulate recursive hedging strategies. Finally, we present a decision tree, table of values, and figures to support our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信