{"title":"考虑到低碳政策,对橡胶轮胎龙门起重机进行油改电改造和部署","authors":"Yi Ding, Deng Pan, Kaimin Chen, Yang Yang","doi":"10.1111/itor.13535","DOIUrl":null,"url":null,"abstract":"To address the high‐carbon emissions from port equipment, one of the most effective measures is to replace diesel‐powered rubber‐tyred gantry cranes (RTGs) with electric‐powered alternatives. However, the oil‐to‐electricity retrofitting for diesel‐driven RTGs may negatively impact port operation efficiency. Moreover, port enterprises typically do not initiate the retrofitting without the low‐carbon policies. Therefore, this study focuses on the retrofitting of RTGs in combination with their deployment under the carbon emissions trading (CET) and government subsidy policies. An integer programming model is developed to help port enterprises determine the multistage planning of RTGs' retrofitting and deployment. Based on the block‐diagonal structure of the proposed model, a column generation method employing Dantzig–Wolfe decomposition is developed. The optimal integer solution of the model is then further refined using a branch‐and‐price approach. The Shanghai Yangshan Deep Water Port is used for numerical experiments. Numerical results demonstrate that the implementation of CET and government subsidy policies can reduce approximately 17,630 tons of carbon emissions and $8,751,861 operating costs in container terminal yard. Meanwhile, increasing government subsidies and carbon trading prices, and reducing free carbon emission quotas can encourage port enterprises to reduce more emissions.","PeriodicalId":49176,"journal":{"name":"International Transactions in Operational Research","volume":"33 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil‐to‐electricity retrofitting and deployment of rubber‐tyred gantry cranes considering low‐carbon policies\",\"authors\":\"Yi Ding, Deng Pan, Kaimin Chen, Yang Yang\",\"doi\":\"10.1111/itor.13535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the high‐carbon emissions from port equipment, one of the most effective measures is to replace diesel‐powered rubber‐tyred gantry cranes (RTGs) with electric‐powered alternatives. However, the oil‐to‐electricity retrofitting for diesel‐driven RTGs may negatively impact port operation efficiency. Moreover, port enterprises typically do not initiate the retrofitting without the low‐carbon policies. Therefore, this study focuses on the retrofitting of RTGs in combination with their deployment under the carbon emissions trading (CET) and government subsidy policies. An integer programming model is developed to help port enterprises determine the multistage planning of RTGs' retrofitting and deployment. Based on the block‐diagonal structure of the proposed model, a column generation method employing Dantzig–Wolfe decomposition is developed. The optimal integer solution of the model is then further refined using a branch‐and‐price approach. The Shanghai Yangshan Deep Water Port is used for numerical experiments. Numerical results demonstrate that the implementation of CET and government subsidy policies can reduce approximately 17,630 tons of carbon emissions and $8,751,861 operating costs in container terminal yard. Meanwhile, increasing government subsidies and carbon trading prices, and reducing free carbon emission quotas can encourage port enterprises to reduce more emissions.\",\"PeriodicalId\":49176,\"journal\":{\"name\":\"International Transactions in Operational Research\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions in Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1111/itor.13535\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions in Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1111/itor.13535","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Oil‐to‐electricity retrofitting and deployment of rubber‐tyred gantry cranes considering low‐carbon policies
To address the high‐carbon emissions from port equipment, one of the most effective measures is to replace diesel‐powered rubber‐tyred gantry cranes (RTGs) with electric‐powered alternatives. However, the oil‐to‐electricity retrofitting for diesel‐driven RTGs may negatively impact port operation efficiency. Moreover, port enterprises typically do not initiate the retrofitting without the low‐carbon policies. Therefore, this study focuses on the retrofitting of RTGs in combination with their deployment under the carbon emissions trading (CET) and government subsidy policies. An integer programming model is developed to help port enterprises determine the multistage planning of RTGs' retrofitting and deployment. Based on the block‐diagonal structure of the proposed model, a column generation method employing Dantzig–Wolfe decomposition is developed. The optimal integer solution of the model is then further refined using a branch‐and‐price approach. The Shanghai Yangshan Deep Water Port is used for numerical experiments. Numerical results demonstrate that the implementation of CET and government subsidy policies can reduce approximately 17,630 tons of carbon emissions and $8,751,861 operating costs in container terminal yard. Meanwhile, increasing government subsidies and carbon trading prices, and reducing free carbon emission quotas can encourage port enterprises to reduce more emissions.
期刊介绍:
International Transactions in Operational Research (ITOR) aims to advance the understanding and practice of Operational Research (OR) and Management Science internationally. Its scope includes:
International problems, such as those of fisheries management, environmental issues, and global competitiveness
International work done by major OR figures
Studies of worldwide interest from nations with emerging OR communities
National or regional OR work which has the potential for application in other nations
Technical developments of international interest
Specific organizational examples that can be applied in other countries
National and international presentations of transnational interest
Broadly relevant professional issues, such as those of ethics and practice
Applications relevant to global industries, such as operations management, manufacturing, and logistics.