涉及卡普托导数的分式延迟微分方程的稳健高阶方案

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Biswajit Prusty, Madhukant Sharma
{"title":"涉及卡普托导数的分式延迟微分方程的稳健高阶方案","authors":"Biswajit Prusty,&nbsp;Madhukant Sharma","doi":"10.1007/s40995-024-01695-9","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers nonlinear fractional delay differential equations involving Caputo’s fractional derivative of order <span>\\(\\alpha \\in (0,1)\\)</span>. We focus on designing a robust numerical algorithm of order <span>\\(O(h^{4-\\alpha })\\)</span>. To achieve this, we developed a higher-order interpolation-based approximation for Caputo’s derivative, which enables us to construct a robust numerical scheme for the considered problem. Furthermore, we discuss the stability and error analysis of the proposed higher-order scheme. Finally, numerous examples, including real-life applications, are evaluated to demonstrate the computational efficiency of the proposed algorithm.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 6","pages":"1561 - 1577"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Higher-Order Scheme for Fractional Delay Differential Equations Involving Caputo Derivative\",\"authors\":\"Biswajit Prusty,&nbsp;Madhukant Sharma\",\"doi\":\"10.1007/s40995-024-01695-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article considers nonlinear fractional delay differential equations involving Caputo’s fractional derivative of order <span>\\\\(\\\\alpha \\\\in (0,1)\\\\)</span>. We focus on designing a robust numerical algorithm of order <span>\\\\(O(h^{4-\\\\alpha })\\\\)</span>. To achieve this, we developed a higher-order interpolation-based approximation for Caputo’s derivative, which enables us to construct a robust numerical scheme for the considered problem. Furthermore, we discuss the stability and error analysis of the proposed higher-order scheme. Finally, numerous examples, including real-life applications, are evaluated to demonstrate the computational efficiency of the proposed algorithm.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"48 6\",\"pages\":\"1561 - 1577\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-024-01695-9\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01695-9","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了涉及卡普托分数导数的非线性分数延迟微分方程,其阶数为\(\alpha \in (0,1)\)。我们的重点是设计一种鲁棒的数值算法(O(h^{4-\alpha })。为此,我们开发了一种基于插值的高阶近似 Caputo 导数,从而为所考虑的问题构建了一种稳健的数值方案。此外,我们还讨论了所提出的高阶方案的稳定性和误差分析。最后,我们对包括现实应用在内的大量实例进行了评估,以证明所提算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Robust Higher-Order Scheme for Fractional Delay Differential Equations Involving Caputo Derivative

A Robust Higher-Order Scheme for Fractional Delay Differential Equations Involving Caputo Derivative

A Robust Higher-Order Scheme for Fractional Delay Differential Equations Involving Caputo Derivative

This article considers nonlinear fractional delay differential equations involving Caputo’s fractional derivative of order \(\alpha \in (0,1)\). We focus on designing a robust numerical algorithm of order \(O(h^{4-\alpha })\). To achieve this, we developed a higher-order interpolation-based approximation for Caputo’s derivative, which enables us to construct a robust numerical scheme for the considered problem. Furthermore, we discuss the stability and error analysis of the proposed higher-order scheme. Finally, numerous examples, including real-life applications, are evaluated to demonstrate the computational efficiency of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信