{"title":"长期连作在保持作物产量的同时减少温室气体排放","authors":"Upendra M. Sainju, Brett L. Allen, Jalal D. Jabro","doi":"10.1002/jeq2.20627","DOIUrl":null,"url":null,"abstract":"<p>Information is needed on the effect of long-term cropping systems on greenhouse gas (GHG) emissions in dryland conditions. The effect of 34 years of dryland cropping system was examined on N<sub>2</sub>O and CH<sub>4</sub> emissions, greenhouse gas balance (GHGB), crop yield, and yield-scaled GHG balance (YSGB) from 2016–2017 to 2017–2018 in the US northern Great Plains. Cropping systems were no-till continuous spring wheat <i>(Triticum aestivum</i> L.) (NTCW), no-till spring wheat-pea <i>(Pisum sativum</i> L.) (NTWP), and conventional till spring wheat-fallow (CTWF). Gases were sampled twice a week to once a month throughout the year using a static chamber and flux determined. Soil C sequestration rate at 0–10 cm was determined from samples taken in 2012 and 2019. The N<sub>2</sub>O emissions occurred immediately after planting, fertilization, and intense rainfall from May to September in both years when the emissions greater for NTCW and NTWP than CTWF. The CH<sub>4</sub> emissions were minimal and mostly negative throughout the year. Carbon sequestration rate was positive for NTCW and NTWP due to greater C input, but negative for CTWF due to rapid C mineralization. As a result, GHGB was 170%–362% lower for NTCW than NTWP and CTWF. Annualized crop yield was 23%–60% greater for NTWP than NTCW and CTWF in 2016–2017, but not different among cropping systems in 2017–2018. The YSGB was also 129%–132% lower for NTCW and NTWP than CTWF in both years. Because of greater annualized crop yield, but lower GHG emissions, NTWP is recommended for reducing GHG emissions while sustaining long-term dryland crop yields in the northern Great Plains.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1073-1085"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20627","citationCount":"0","resultStr":"{\"title\":\"Long-term continuous cropping reduces greenhouse gas emissions while sustaining crop yields\",\"authors\":\"Upendra M. Sainju, Brett L. Allen, Jalal D. Jabro\",\"doi\":\"10.1002/jeq2.20627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Information is needed on the effect of long-term cropping systems on greenhouse gas (GHG) emissions in dryland conditions. The effect of 34 years of dryland cropping system was examined on N<sub>2</sub>O and CH<sub>4</sub> emissions, greenhouse gas balance (GHGB), crop yield, and yield-scaled GHG balance (YSGB) from 2016–2017 to 2017–2018 in the US northern Great Plains. Cropping systems were no-till continuous spring wheat <i>(Triticum aestivum</i> L.) (NTCW), no-till spring wheat-pea <i>(Pisum sativum</i> L.) (NTWP), and conventional till spring wheat-fallow (CTWF). Gases were sampled twice a week to once a month throughout the year using a static chamber and flux determined. Soil C sequestration rate at 0–10 cm was determined from samples taken in 2012 and 2019. The N<sub>2</sub>O emissions occurred immediately after planting, fertilization, and intense rainfall from May to September in both years when the emissions greater for NTCW and NTWP than CTWF. The CH<sub>4</sub> emissions were minimal and mostly negative throughout the year. Carbon sequestration rate was positive for NTCW and NTWP due to greater C input, but negative for CTWF due to rapid C mineralization. As a result, GHGB was 170%–362% lower for NTCW than NTWP and CTWF. Annualized crop yield was 23%–60% greater for NTWP than NTCW and CTWF in 2016–2017, but not different among cropping systems in 2017–2018. The YSGB was also 129%–132% lower for NTCW and NTWP than CTWF in both years. Because of greater annualized crop yield, but lower GHG emissions, NTWP is recommended for reducing GHG emissions while sustaining long-term dryland crop yields in the northern Great Plains.</p>\",\"PeriodicalId\":15732,\"journal\":{\"name\":\"Journal of environmental quality\",\"volume\":\"53 6\",\"pages\":\"1073-1085\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20627\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of environmental quality\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20627\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20627","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long-term continuous cropping reduces greenhouse gas emissions while sustaining crop yields
Information is needed on the effect of long-term cropping systems on greenhouse gas (GHG) emissions in dryland conditions. The effect of 34 years of dryland cropping system was examined on N2O and CH4 emissions, greenhouse gas balance (GHGB), crop yield, and yield-scaled GHG balance (YSGB) from 2016–2017 to 2017–2018 in the US northern Great Plains. Cropping systems were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), no-till spring wheat-pea (Pisum sativum L.) (NTWP), and conventional till spring wheat-fallow (CTWF). Gases were sampled twice a week to once a month throughout the year using a static chamber and flux determined. Soil C sequestration rate at 0–10 cm was determined from samples taken in 2012 and 2019. The N2O emissions occurred immediately after planting, fertilization, and intense rainfall from May to September in both years when the emissions greater for NTCW and NTWP than CTWF. The CH4 emissions were minimal and mostly negative throughout the year. Carbon sequestration rate was positive for NTCW and NTWP due to greater C input, but negative for CTWF due to rapid C mineralization. As a result, GHGB was 170%–362% lower for NTCW than NTWP and CTWF. Annualized crop yield was 23%–60% greater for NTWP than NTCW and CTWF in 2016–2017, but not different among cropping systems in 2017–2018. The YSGB was also 129%–132% lower for NTCW and NTWP than CTWF in both years. Because of greater annualized crop yield, but lower GHG emissions, NTWP is recommended for reducing GHG emissions while sustaining long-term dryland crop yields in the northern Great Plains.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.