{"title":"图神经网络混合音乐推荐","authors":"Matej Bevec, Marko Tkalčič, Matevž Pesek","doi":"10.1007/s11257-024-09410-4","DOIUrl":null,"url":null,"abstract":"<p>Modern music streaming services rely on recommender systems to help users navigate within their large collections. Collaborative filtering (CF) methods, that leverage past user–item interactions, have been most successful, but have various limitations, like performing poorly among sparsely connected items. Conversely, content-based models circumvent the data-sparsity issue by recommending based on item content alone, but have seen limited success. Recently, graph-based machine learning approaches have shown, in other domains, to be able to address the aforementioned issues. Graph neural networks (GNN) in particular promise to learn from both the complex relationships within a user interaction graph, as well as content to generate hybrid recommendations. Here, we propose a music recommender system using a state-of-the-art GNN, PinSage, and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and content-based methods on a related song prediction task, venturing beyond accuracy in our evaluation. Our experiments show that (i) our approach is among the top performers and stands out as the most well rounded compared to baselines, (ii) graph-based CF methods outperform matrix-based CF approaches, suggesting that user interaction data may be better represented as a graph and (iii) in our evaluation, CF methods do not exhibit a performance drop in the long tail, where the hybrid approach does not offer an advantage.\n</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"5 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid music recommendation with graph neural networks\",\"authors\":\"Matej Bevec, Marko Tkalčič, Matevž Pesek\",\"doi\":\"10.1007/s11257-024-09410-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern music streaming services rely on recommender systems to help users navigate within their large collections. Collaborative filtering (CF) methods, that leverage past user–item interactions, have been most successful, but have various limitations, like performing poorly among sparsely connected items. Conversely, content-based models circumvent the data-sparsity issue by recommending based on item content alone, but have seen limited success. Recently, graph-based machine learning approaches have shown, in other domains, to be able to address the aforementioned issues. Graph neural networks (GNN) in particular promise to learn from both the complex relationships within a user interaction graph, as well as content to generate hybrid recommendations. Here, we propose a music recommender system using a state-of-the-art GNN, PinSage, and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and content-based methods on a related song prediction task, venturing beyond accuracy in our evaluation. Our experiments show that (i) our approach is among the top performers and stands out as the most well rounded compared to baselines, (ii) graph-based CF methods outperform matrix-based CF approaches, suggesting that user interaction data may be better represented as a graph and (iii) in our evaluation, CF methods do not exhibit a performance drop in the long tail, where the hybrid approach does not offer an advantage.\\n</p>\",\"PeriodicalId\":49388,\"journal\":{\"name\":\"User Modeling and User-Adapted Interaction\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"User Modeling and User-Adapted Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11257-024-09410-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-024-09410-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Hybrid music recommendation with graph neural networks
Modern music streaming services rely on recommender systems to help users navigate within their large collections. Collaborative filtering (CF) methods, that leverage past user–item interactions, have been most successful, but have various limitations, like performing poorly among sparsely connected items. Conversely, content-based models circumvent the data-sparsity issue by recommending based on item content alone, but have seen limited success. Recently, graph-based machine learning approaches have shown, in other domains, to be able to address the aforementioned issues. Graph neural networks (GNN) in particular promise to learn from both the complex relationships within a user interaction graph, as well as content to generate hybrid recommendations. Here, we propose a music recommender system using a state-of-the-art GNN, PinSage, and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and content-based methods on a related song prediction task, venturing beyond accuracy in our evaluation. Our experiments show that (i) our approach is among the top performers and stands out as the most well rounded compared to baselines, (ii) graph-based CF methods outperform matrix-based CF approaches, suggesting that user interaction data may be better represented as a graph and (iii) in our evaluation, CF methods do not exhibit a performance drop in the long tail, where the hybrid approach does not offer an advantage.
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems