利用合成地面运动进行基于物理学的概率地震灾害评估:在印度稳定大陆地区的应用

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
K. P. Sreejaya, Bhargavi Podili, S. T. G. Raghukanth
{"title":"利用合成地面运动进行基于物理学的概率地震灾害评估:在印度稳定大陆地区的应用","authors":"K. P. Sreejaya,&nbsp;Bhargavi Podili,&nbsp;S. T. G. Raghukanth","doi":"10.1007/s10950-024-10236-1","DOIUrl":null,"url":null,"abstract":"<div><p>Attaining explicit hazard estimates is a challenging task for data sparse regions such as the Peninsular India. Physics based probabilistic seismic hazard analysis (Pb-PSHA) has gained momentum in recent years as a viable solution to this issue. While performing a site-specific analysis in data-sparse regions, instead of incorporating ground motion models (GMMs) from other regions in the hazard methodology, the Pb-PSHA involves obtaining physics-based numerical simulations. In the present study, Pb-PSHA is carried out for the entire southern Peninsular India, with a detailed demonstration for the Kalpakkam site, Tamilnadu. Due to absence of any data on local fault characteristics and past rupture models, simulations are derived using the spectral element method, for several source rupture scenarios. Further, the stochastic seismological model is used to simulate for high frequency (1-100 Hz) ensemble ground motions. Broadband ground motions are then obtained by combining the results from the deterministic model i.e., low frequency (0.01-1 Hz) simulations and the stochastic model. Further, PSHA based on elliptical gridded seismicity is carried out to obtain hazard curves for spectral accelerations. The ensuing uniform hazard response spectra are compared against the outcome of traditional PSHA involving a global GMM. The results indicate that the PGA values obtained from the Pb-PSHA are slightly higher than that of the global GMM-based PSHA.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"28 5","pages":"1247 - 1265"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-based probabilistic seismic hazard assessment using synthetic ground motions: application to the stable continental region of India\",\"authors\":\"K. P. Sreejaya,&nbsp;Bhargavi Podili,&nbsp;S. T. G. Raghukanth\",\"doi\":\"10.1007/s10950-024-10236-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Attaining explicit hazard estimates is a challenging task for data sparse regions such as the Peninsular India. Physics based probabilistic seismic hazard analysis (Pb-PSHA) has gained momentum in recent years as a viable solution to this issue. While performing a site-specific analysis in data-sparse regions, instead of incorporating ground motion models (GMMs) from other regions in the hazard methodology, the Pb-PSHA involves obtaining physics-based numerical simulations. In the present study, Pb-PSHA is carried out for the entire southern Peninsular India, with a detailed demonstration for the Kalpakkam site, Tamilnadu. Due to absence of any data on local fault characteristics and past rupture models, simulations are derived using the spectral element method, for several source rupture scenarios. Further, the stochastic seismological model is used to simulate for high frequency (1-100 Hz) ensemble ground motions. Broadband ground motions are then obtained by combining the results from the deterministic model i.e., low frequency (0.01-1 Hz) simulations and the stochastic model. Further, PSHA based on elliptical gridded seismicity is carried out to obtain hazard curves for spectral accelerations. The ensuing uniform hazard response spectra are compared against the outcome of traditional PSHA involving a global GMM. The results indicate that the PGA values obtained from the Pb-PSHA are slightly higher than that of the global GMM-based PSHA.</p></div>\",\"PeriodicalId\":16994,\"journal\":{\"name\":\"Journal of Seismology\",\"volume\":\"28 5\",\"pages\":\"1247 - 1265\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Seismology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10950-024-10236-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10236-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对于印度半岛等数据稀少的地区来说,获得明确的危险估计是一项具有挑战性的任务。近年来,基于物理的地震危险性概率分析(Pb-PSHA)作为解决这一问题的可行方案,已经获得了蓬勃发展。在数据稀缺地区进行特定地点分析时,Pb-PSHA 不需要将其他地区的地震动模型(GMMs)纳入危险性分析方法,而是采用基于物理的数值模拟。在本研究中,Pb-PSHA 针对整个印度半岛南部进行,并对泰米尔纳德邦的 Kalpakkam 站点进行了详细论证。由于缺乏有关当地断层特征和过去破裂模型的任何数据,本研究采用谱元法对几种震源破裂情况进行了模拟。此外,还使用随机地震学模型模拟高频(1-100 Hz)集合地面运动。然后将确定性模型(即低频(0.01-1 Hz)模拟)和随机模型的结果结合起来,得到宽带地面运动。此外,还根据椭圆形网格地震进行 PSHA,以获得频谱加速度的危险曲线。随后,将统一危险反应谱与涉及全局 GMM 的传统 PSHA 结果进行比较。结果表明,Pb-PSHA 得出的 PGA 值略高于基于全局 GMM 的 PSHA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physics-based probabilistic seismic hazard assessment using synthetic ground motions: application to the stable continental region of India

Physics-based probabilistic seismic hazard assessment using synthetic ground motions: application to the stable continental region of India

Physics-based probabilistic seismic hazard assessment using synthetic ground motions: application to the stable continental region of India

Attaining explicit hazard estimates is a challenging task for data sparse regions such as the Peninsular India. Physics based probabilistic seismic hazard analysis (Pb-PSHA) has gained momentum in recent years as a viable solution to this issue. While performing a site-specific analysis in data-sparse regions, instead of incorporating ground motion models (GMMs) from other regions in the hazard methodology, the Pb-PSHA involves obtaining physics-based numerical simulations. In the present study, Pb-PSHA is carried out for the entire southern Peninsular India, with a detailed demonstration for the Kalpakkam site, Tamilnadu. Due to absence of any data on local fault characteristics and past rupture models, simulations are derived using the spectral element method, for several source rupture scenarios. Further, the stochastic seismological model is used to simulate for high frequency (1-100 Hz) ensemble ground motions. Broadband ground motions are then obtained by combining the results from the deterministic model i.e., low frequency (0.01-1 Hz) simulations and the stochastic model. Further, PSHA based on elliptical gridded seismicity is carried out to obtain hazard curves for spectral accelerations. The ensuing uniform hazard response spectra are compared against the outcome of traditional PSHA involving a global GMM. The results indicate that the PGA values obtained from the Pb-PSHA are slightly higher than that of the global GMM-based PSHA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信