通过温度循环在无水液滴中生长和溶解 NaClO3 晶体

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Minerals Pub Date : 2024-08-30 DOI:10.3390/min14090898
Alexis Leborgne, Woo-Sik Kim, Bum Jun Park, Morgane Sanselme, Gérard Coquerel
{"title":"通过温度循环在无水液滴中生长和溶解 NaClO3 晶体","authors":"Alexis Leborgne, Woo-Sik Kim, Bum Jun Park, Morgane Sanselme, Gérard Coquerel","doi":"10.3390/min14090898","DOIUrl":null,"url":null,"abstract":"Abstract: Sodium chlorate is the most popular compound used to study spontaneous symmetry breaking by means of crystallization. Therefore, it is important to know the behavior of the solid particles. NaClO3 crystal growth and dissolution are investigated in an aqueous sessile droplet subjected to numerous temperature cycles. On cooling, in addition to the classical formation of repeated elongated fluid inclusions, there is a reproducible appearance of prismatic fluid inclusions (PFIs) at the corners of single crystals. The underlying mechanism involves the complete termination of the (110) face growth and the propagation of the {100} faces, which can close the PFIs. This study reports that on heating, transient donut-like single crystals formed, which could lead to their segmentation, even without stirring the suspension. The systematic addition of other sodium salts with chlorine atoms at different oxidation states did not change these observations.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NaClO3 Crystal Growth and Dissolution by Temperature Cycling in a Sessile Droplet\",\"authors\":\"Alexis Leborgne, Woo-Sik Kim, Bum Jun Park, Morgane Sanselme, Gérard Coquerel\",\"doi\":\"10.3390/min14090898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Sodium chlorate is the most popular compound used to study spontaneous symmetry breaking by means of crystallization. Therefore, it is important to know the behavior of the solid particles. NaClO3 crystal growth and dissolution are investigated in an aqueous sessile droplet subjected to numerous temperature cycles. On cooling, in addition to the classical formation of repeated elongated fluid inclusions, there is a reproducible appearance of prismatic fluid inclusions (PFIs) at the corners of single crystals. The underlying mechanism involves the complete termination of the (110) face growth and the propagation of the {100} faces, which can close the PFIs. This study reports that on heating, transient donut-like single crystals formed, which could lead to their segmentation, even without stirring the suspension. The systematic addition of other sodium salts with chlorine atoms at different oxidation states did not change these observations.\",\"PeriodicalId\":18601,\"journal\":{\"name\":\"Minerals\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/min14090898\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090898","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:氯酸钠是最常用于研究通过结晶自发破坏对称性的化合物。因此,了解固体颗粒的行为非常重要。本文研究了在水性无柄液滴中,NaClO3 晶体生长和溶解过程中的多次温度循环。冷却时,除了重复拉长的流体包裹体的典型形成外,在单晶体的边角处还会重复出现棱柱形流体包裹体 (PFI)。其基本机理涉及 (110) 面生长的完全终止和 {100} 面的传播,后者可以封闭 PFIs。本研究报告指出,加热时会形成瞬时甜甜圈状单晶体,即使不搅拌悬浮液也会导致单晶体分割。系统地添加其他具有不同氧化态氯原子的钠盐并没有改变这些观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NaClO3 Crystal Growth and Dissolution by Temperature Cycling in a Sessile Droplet
Abstract: Sodium chlorate is the most popular compound used to study spontaneous symmetry breaking by means of crystallization. Therefore, it is important to know the behavior of the solid particles. NaClO3 crystal growth and dissolution are investigated in an aqueous sessile droplet subjected to numerous temperature cycles. On cooling, in addition to the classical formation of repeated elongated fluid inclusions, there is a reproducible appearance of prismatic fluid inclusions (PFIs) at the corners of single crystals. The underlying mechanism involves the complete termination of the (110) face growth and the propagation of the {100} faces, which can close the PFIs. This study reports that on heating, transient donut-like single crystals formed, which could lead to their segmentation, even without stirring the suspension. The systematic addition of other sodium salts with chlorine atoms at different oxidation states did not change these observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals
Minerals MINERALOGY-MINING & MINERAL PROCESSING
CiteScore
4.10
自引率
20.00%
发文量
1351
审稿时长
19.04 days
期刊介绍: Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信