{"title":"含金黄铁矿的表面化学与浮选","authors":"Seda Özçelik, Zafir Ekmekçi","doi":"10.3390/min14090914","DOIUrl":null,"url":null,"abstract":"Gold grains are observed in a variety of forms, such as coarse-liberated native gold grains, and ultra-fine grains associated with sulfide or non-sulfide mineral particles, in the form of solid solution in sulfide minerals, mainly pyrite. In the flotation of gold ores, bulk sulfide mineral flotation is generally applied to maximize gold recovery. This approach gives high gold recoveries, but it also causes the recovery of barren sulfide minerals (i.e., sulfide mineral particles with no gold content), which increases concentrate tonnage and transportation costs and reduces the grade sometimes to below the saleable limit (approx. 10 g/t Au). This study addresses the differences between gold-bearing and barren pyrite particles taken from various ore deposits and utilizes these differences for the selective flotation of gold-bearing pyrite. The laboratory scale flotation tests conducted on three pyrite samples having different cyanide soluble gold contents show that a selective separation between gold-bearing pyrite and barren pyrite particles could be achieved under specific flotation conditions. Gold recovery is correlated directly with the cyanide-soluble gold in the ore samples. Electrochemical experiments were conducted to elucidate the differences in surface properties of the two types of pyrite. The barren pyrite particles were more cathodic and prone to cathodic reduction of OH− and depressant ions on the surface, and they could be depressed effectively without significantly affecting the gold-bearing particles.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Chemistry and Flotation of Gold-Bearing Pyrite\",\"authors\":\"Seda Özçelik, Zafir Ekmekçi\",\"doi\":\"10.3390/min14090914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold grains are observed in a variety of forms, such as coarse-liberated native gold grains, and ultra-fine grains associated with sulfide or non-sulfide mineral particles, in the form of solid solution in sulfide minerals, mainly pyrite. In the flotation of gold ores, bulk sulfide mineral flotation is generally applied to maximize gold recovery. This approach gives high gold recoveries, but it also causes the recovery of barren sulfide minerals (i.e., sulfide mineral particles with no gold content), which increases concentrate tonnage and transportation costs and reduces the grade sometimes to below the saleable limit (approx. 10 g/t Au). This study addresses the differences between gold-bearing and barren pyrite particles taken from various ore deposits and utilizes these differences for the selective flotation of gold-bearing pyrite. The laboratory scale flotation tests conducted on three pyrite samples having different cyanide soluble gold contents show that a selective separation between gold-bearing pyrite and barren pyrite particles could be achieved under specific flotation conditions. Gold recovery is correlated directly with the cyanide-soluble gold in the ore samples. Electrochemical experiments were conducted to elucidate the differences in surface properties of the two types of pyrite. The barren pyrite particles were more cathodic and prone to cathodic reduction of OH− and depressant ions on the surface, and they could be depressed effectively without significantly affecting the gold-bearing particles.\",\"PeriodicalId\":18601,\"journal\":{\"name\":\"Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/min14090914\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090914","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Surface Chemistry and Flotation of Gold-Bearing Pyrite
Gold grains are observed in a variety of forms, such as coarse-liberated native gold grains, and ultra-fine grains associated with sulfide or non-sulfide mineral particles, in the form of solid solution in sulfide minerals, mainly pyrite. In the flotation of gold ores, bulk sulfide mineral flotation is generally applied to maximize gold recovery. This approach gives high gold recoveries, but it also causes the recovery of barren sulfide minerals (i.e., sulfide mineral particles with no gold content), which increases concentrate tonnage and transportation costs and reduces the grade sometimes to below the saleable limit (approx. 10 g/t Au). This study addresses the differences between gold-bearing and barren pyrite particles taken from various ore deposits and utilizes these differences for the selective flotation of gold-bearing pyrite. The laboratory scale flotation tests conducted on three pyrite samples having different cyanide soluble gold contents show that a selective separation between gold-bearing pyrite and barren pyrite particles could be achieved under specific flotation conditions. Gold recovery is correlated directly with the cyanide-soluble gold in the ore samples. Electrochemical experiments were conducted to elucidate the differences in surface properties of the two types of pyrite. The barren pyrite particles were more cathodic and prone to cathodic reduction of OH− and depressant ions on the surface, and they could be depressed effectively without significantly affecting the gold-bearing particles.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.