Moyagabo Rapetsoa, Musa Manzi, Ian James, Mpofana Sihoyiya, Raymond Durrheim, Michelle Pienaar
{"title":"马塞韦矿区铂矿床的创新地震成像:地表和矿内","authors":"Moyagabo Rapetsoa, Musa Manzi, Ian James, Mpofana Sihoyiya, Raymond Durrheim, Michelle Pienaar","doi":"10.3390/min14090913","DOIUrl":null,"url":null,"abstract":"Maseve Mine is located in the western limb of the Bushveld Complex, recognized as the largest layered igneous intrusion in the world. The study shows results from surface (SP1, SP2, and SP3) and tunnel (T3a, T3b, and TP4b) reflection seismic profiles, totaling 4150 m. Tunnel seismic data were acquired using a seismic landstreamer and spiked geophones with 5 m receiver and shot spacing, as well as a sledgehammer for shots due to space constraints and safety. The profiles, 10–50 m above mineral deposits, crossed major geological structures. Surface seismic profiles used cabled systems and wireless sensors with 5 m and 10 m receiver spacing, respectively, and a 500 kg drop hammer as a source with 10 m shot spacing. Despite high noise levels from mine infrastructure and power cables, a careful processing workflow enhanced target reflections. Interpretation was constrained using borehole data, geological models, and 2D/3D seismic modeling. The processed data exhibit gently dipping reflections associated with faults and dykes, imaging the target mineralization (Merensky Reef and Upper Group 2) and a possible extension. Tunnel seismic experiments demonstrated the application of seismic methods using in-mine infrastructure, while surface experiments proved efficient, illustrating small-scale seismic surveys’ capability to image the subsurface, adding value in active mining environments for exploration with cost-effective seismic equipment.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"41 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Seismic Imaging of the Platinum Deposits, Maseve Mine: Surface and In-Mine\",\"authors\":\"Moyagabo Rapetsoa, Musa Manzi, Ian James, Mpofana Sihoyiya, Raymond Durrheim, Michelle Pienaar\",\"doi\":\"10.3390/min14090913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maseve Mine is located in the western limb of the Bushveld Complex, recognized as the largest layered igneous intrusion in the world. The study shows results from surface (SP1, SP2, and SP3) and tunnel (T3a, T3b, and TP4b) reflection seismic profiles, totaling 4150 m. Tunnel seismic data were acquired using a seismic landstreamer and spiked geophones with 5 m receiver and shot spacing, as well as a sledgehammer for shots due to space constraints and safety. The profiles, 10–50 m above mineral deposits, crossed major geological structures. Surface seismic profiles used cabled systems and wireless sensors with 5 m and 10 m receiver spacing, respectively, and a 500 kg drop hammer as a source with 10 m shot spacing. Despite high noise levels from mine infrastructure and power cables, a careful processing workflow enhanced target reflections. Interpretation was constrained using borehole data, geological models, and 2D/3D seismic modeling. The processed data exhibit gently dipping reflections associated with faults and dykes, imaging the target mineralization (Merensky Reef and Upper Group 2) and a possible extension. Tunnel seismic experiments demonstrated the application of seismic methods using in-mine infrastructure, while surface experiments proved efficient, illustrating small-scale seismic surveys’ capability to image the subsurface, adding value in active mining environments for exploration with cost-effective seismic equipment.\",\"PeriodicalId\":18601,\"journal\":{\"name\":\"Minerals\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/min14090913\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090913","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Innovative Seismic Imaging of the Platinum Deposits, Maseve Mine: Surface and In-Mine
Maseve Mine is located in the western limb of the Bushveld Complex, recognized as the largest layered igneous intrusion in the world. The study shows results from surface (SP1, SP2, and SP3) and tunnel (T3a, T3b, and TP4b) reflection seismic profiles, totaling 4150 m. Tunnel seismic data were acquired using a seismic landstreamer and spiked geophones with 5 m receiver and shot spacing, as well as a sledgehammer for shots due to space constraints and safety. The profiles, 10–50 m above mineral deposits, crossed major geological structures. Surface seismic profiles used cabled systems and wireless sensors with 5 m and 10 m receiver spacing, respectively, and a 500 kg drop hammer as a source with 10 m shot spacing. Despite high noise levels from mine infrastructure and power cables, a careful processing workflow enhanced target reflections. Interpretation was constrained using borehole data, geological models, and 2D/3D seismic modeling. The processed data exhibit gently dipping reflections associated with faults and dykes, imaging the target mineralization (Merensky Reef and Upper Group 2) and a possible extension. Tunnel seismic experiments demonstrated the application of seismic methods using in-mine infrastructure, while surface experiments proved efficient, illustrating small-scale seismic surveys’ capability to image the subsurface, adding value in active mining environments for exploration with cost-effective seismic equipment.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.