{"title":"利用基于 ICWT-Decon 的地震属性和声学阻抗反演加强印度东部煤田的薄煤层探测","authors":"Naresh Kumar Seelam, Thinesh Kumar, Santosh Dhubia, Gangumalla Srinivasa Rao, Sanjit Kumar Pal","doi":"10.3390/min14090920","DOIUrl":null,"url":null,"abstract":"A high-resolution seismic survey (HRSS) is often used in coal exploration to bridge the data gap between two consecutive boreholes and avoid ambiguity in geological interpretation. The application of high-resolution seismic surveys in the Indian context is challenging as the delineation of thin non-coal layers within the coal layer requires a very high seismic data resolution. However, conventional seismic processing techniques fail to resolve thin coal/non-coal layers and faults, which is crucial for the precise estimation of coal resources and mine economics. To address these issues, we applied the inverse continuous wavelet transform deconvolution (ICWT-Decon) technique to post-stack depth-migrated seismic sections. We examined the feasibility of the ICWT-Decon technique in both a synthetic post-stack depth-migrated model and 2D/3D seismic data from the North Karanpura and Talcher Coalfields in Eastern India. The results offered enhanced seismic sections, attributes (similarity and sweetness), and acoustic inversion that aided in the precise positioning of faults and the delineation of a thin non-coal layer of 4.68 m within a 16.7 m coal seam at an approximate depth of 450 m to 550 m. This helped in the refinement of the resource estimation from 74.96 MT before applying ICWT-Decon to 55.92 MT afterward. Overall, the results of the study showed enhancements in the seismic data resolution, the better output of seismic attributes, and acoustic inversion, which could enable more precise lithological and structural interpretation.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Thin Coal Seam Detection in Eastern Indian Coalfields Using ICWT-Decon-Based Seismic Attributes and Acoustic Impedance Inversion\",\"authors\":\"Naresh Kumar Seelam, Thinesh Kumar, Santosh Dhubia, Gangumalla Srinivasa Rao, Sanjit Kumar Pal\",\"doi\":\"10.3390/min14090920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-resolution seismic survey (HRSS) is often used in coal exploration to bridge the data gap between two consecutive boreholes and avoid ambiguity in geological interpretation. The application of high-resolution seismic surveys in the Indian context is challenging as the delineation of thin non-coal layers within the coal layer requires a very high seismic data resolution. However, conventional seismic processing techniques fail to resolve thin coal/non-coal layers and faults, which is crucial for the precise estimation of coal resources and mine economics. To address these issues, we applied the inverse continuous wavelet transform deconvolution (ICWT-Decon) technique to post-stack depth-migrated seismic sections. We examined the feasibility of the ICWT-Decon technique in both a synthetic post-stack depth-migrated model and 2D/3D seismic data from the North Karanpura and Talcher Coalfields in Eastern India. The results offered enhanced seismic sections, attributes (similarity and sweetness), and acoustic inversion that aided in the precise positioning of faults and the delineation of a thin non-coal layer of 4.68 m within a 16.7 m coal seam at an approximate depth of 450 m to 550 m. This helped in the refinement of the resource estimation from 74.96 MT before applying ICWT-Decon to 55.92 MT afterward. Overall, the results of the study showed enhancements in the seismic data resolution, the better output of seismic attributes, and acoustic inversion, which could enable more precise lithological and structural interpretation.\",\"PeriodicalId\":18601,\"journal\":{\"name\":\"Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/min14090920\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090920","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Enhancing Thin Coal Seam Detection in Eastern Indian Coalfields Using ICWT-Decon-Based Seismic Attributes and Acoustic Impedance Inversion
A high-resolution seismic survey (HRSS) is often used in coal exploration to bridge the data gap between two consecutive boreholes and avoid ambiguity in geological interpretation. The application of high-resolution seismic surveys in the Indian context is challenging as the delineation of thin non-coal layers within the coal layer requires a very high seismic data resolution. However, conventional seismic processing techniques fail to resolve thin coal/non-coal layers and faults, which is crucial for the precise estimation of coal resources and mine economics. To address these issues, we applied the inverse continuous wavelet transform deconvolution (ICWT-Decon) technique to post-stack depth-migrated seismic sections. We examined the feasibility of the ICWT-Decon technique in both a synthetic post-stack depth-migrated model and 2D/3D seismic data from the North Karanpura and Talcher Coalfields in Eastern India. The results offered enhanced seismic sections, attributes (similarity and sweetness), and acoustic inversion that aided in the precise positioning of faults and the delineation of a thin non-coal layer of 4.68 m within a 16.7 m coal seam at an approximate depth of 450 m to 550 m. This helped in the refinement of the resource estimation from 74.96 MT before applying ICWT-Decon to 55.92 MT afterward. Overall, the results of the study showed enhancements in the seismic data resolution, the better output of seismic attributes, and acoustic inversion, which could enable more precise lithological and structural interpretation.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.