埋藏山变质岩储层的岩石物理建模方法

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Minerals Pub Date : 2024-08-30 DOI:10.3390/min14090892
Hongjian Hao, Guangzhi Zhang, You Zhou
{"title":"埋藏山变质岩储层的岩石物理建模方法","authors":"Hongjian Hao, Guangzhi Zhang, You Zhou","doi":"10.3390/min14090892","DOIUrl":null,"url":null,"abstract":"The buried hills of the Archean metamorphic rocks in the Bozhong Depression of the Bohai Bay Basin are the main gas-bearing strata, with burial depths ranging from 4000 m to 5500 m. However, metamorphic rocks have internal structural characteristics, such as diverse mineral components, oriented arrangement of mineral particles, complex pore connectivity, variable crystal structures, orthogonal development of multiple sets of fractures, and uneven fluid filling. Compared with conventional reservoirs, they have obvious heterogeneity and anisotropy characteristics. Traditional rock physics modeling methods are no longer suitable for predicting the elastic and anisotropic parameters of metamorphic reservoirs. Therefore, we introduced a vector mixed random medium model to calculate the effect of the oriented arrangement of metamorphic rock minerals on the modulus of the rock matrix and introduced a metamorphic factor to describe the impact of metamorphic recrystallization and alteration metasomatism on the elastic modulus of the rock matrix. Practical applications have shown that the new, improved rock physics modeling method can better estimate the S-wave velocity and anisotropy parameters in wells compared to traditional rock physics modeling methods, providing a reliable basis for predicting fractured reservoirs in metamorphic rock at buried hills.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"97 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rock Physics Modeling Method for Metamorphic Rock Reservoirs in Buried Hill\",\"authors\":\"Hongjian Hao, Guangzhi Zhang, You Zhou\",\"doi\":\"10.3390/min14090892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The buried hills of the Archean metamorphic rocks in the Bozhong Depression of the Bohai Bay Basin are the main gas-bearing strata, with burial depths ranging from 4000 m to 5500 m. However, metamorphic rocks have internal structural characteristics, such as diverse mineral components, oriented arrangement of mineral particles, complex pore connectivity, variable crystal structures, orthogonal development of multiple sets of fractures, and uneven fluid filling. Compared with conventional reservoirs, they have obvious heterogeneity and anisotropy characteristics. Traditional rock physics modeling methods are no longer suitable for predicting the elastic and anisotropic parameters of metamorphic reservoirs. Therefore, we introduced a vector mixed random medium model to calculate the effect of the oriented arrangement of metamorphic rock minerals on the modulus of the rock matrix and introduced a metamorphic factor to describe the impact of metamorphic recrystallization and alteration metasomatism on the elastic modulus of the rock matrix. Practical applications have shown that the new, improved rock physics modeling method can better estimate the S-wave velocity and anisotropy parameters in wells compared to traditional rock physics modeling methods, providing a reliable basis for predicting fractured reservoirs in metamorphic rock at buried hills.\",\"PeriodicalId\":18601,\"journal\":{\"name\":\"Minerals\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/min14090892\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090892","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

渤海湾盆地渤中凹陷阿寒变质岩埋藏丘陵是主要含气地层,埋藏深度在4000米至5500米之间,但变质岩具有矿物组分多样、矿物颗粒定向排列、孔隙连通性复杂、晶体结构多变、多组断裂正交发育、流体充填不均匀等内部构造特征。与常规储层相比,它们具有明显的异质性和各向异性特征。传统的岩石物理建模方法已不适合预测变质岩储层的弹性参数和各向异性参数。因此,我们引入了矢量混合随机介质模型来计算变质岩矿物定向排列对岩石基体模量的影响,并引入了变质因子来描述变质重结晶和蚀变变质对岩石基体弹性模量的影响。实际应用表明,与传统的岩石物理建模方法相比,改进后的新岩石物理建模方法能更好地估算井中的S波速度和各向异性参数,为预测埋藏山体变质岩中的裂缝储层提供了可靠的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Rock Physics Modeling Method for Metamorphic Rock Reservoirs in Buried Hill
The buried hills of the Archean metamorphic rocks in the Bozhong Depression of the Bohai Bay Basin are the main gas-bearing strata, with burial depths ranging from 4000 m to 5500 m. However, metamorphic rocks have internal structural characteristics, such as diverse mineral components, oriented arrangement of mineral particles, complex pore connectivity, variable crystal structures, orthogonal development of multiple sets of fractures, and uneven fluid filling. Compared with conventional reservoirs, they have obvious heterogeneity and anisotropy characteristics. Traditional rock physics modeling methods are no longer suitable for predicting the elastic and anisotropic parameters of metamorphic reservoirs. Therefore, we introduced a vector mixed random medium model to calculate the effect of the oriented arrangement of metamorphic rock minerals on the modulus of the rock matrix and introduced a metamorphic factor to describe the impact of metamorphic recrystallization and alteration metasomatism on the elastic modulus of the rock matrix. Practical applications have shown that the new, improved rock physics modeling method can better estimate the S-wave velocity and anisotropy parameters in wells compared to traditional rock physics modeling methods, providing a reliable basis for predicting fractured reservoirs in metamorphic rock at buried hills.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals
Minerals MINERALOGY-MINING & MINERAL PROCESSING
CiteScore
4.10
自引率
20.00%
发文量
1351
审稿时长
19.04 days
期刊介绍: Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信