通过热压草酸水溶液从含铁矿砂中合成二水α-草酸亚铁:动力学与表征

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Minerals Pub Date : 2024-08-30 DOI:10.3390/min14090891
Carla S. Valdivieso-Ramírez, Salomé Galeas, Marleny D. A. Saldaña, Patricia I. Pontón, Víctor H. Guerrero, Karla Vizuete, Alexis Debut, Bojan A. Marinkovic
{"title":"通过热压草酸水溶液从含铁矿砂中合成二水α-草酸亚铁:动力学与表征","authors":"Carla S. Valdivieso-Ramírez, Salomé Galeas, Marleny D. A. Saldaña, Patricia I. Pontón, Víctor H. Guerrero, Karla Vizuete, Alexis Debut, Bojan A. Marinkovic","doi":"10.3390/min14090891","DOIUrl":null,"url":null,"abstract":"Ferrous oxalate dihydrate is a versatile organic mineral with applications across fields. However, little is known about the feasibility of its synthesis directly from iron-bearing minerals using binary subcritical water (sCW) systems and its associated kinetics. In this study, the sCW+oxalic acid system at either 115 °C or 135 °C was investigated as a reaction medium for ferrous oxalate dihydrate (α-FeC2O4∙2H2O) synthesis, starting from ferrotitaniferous sands. The kinetics of the synthesis reaction were studied, and the physicochemical characterization of the as-synthetized ferrous oxalates was performed. Overall, the sCW synthesis was temperature-dependent, following second-order reaction kinetics according to the proposed precipitation pathway. A high reaction rate constant, significantly high yields (up to 89%), and reduced reaction times (2–8 h) were evident at 135 °C. The as-synthetized product corresponded to the monoclinic α-FeC2O4∙2H2O, showed relatively high specific surface areas (from 31.9 to 33.7 m2∙g−1), and exhibited band gap energies within the visible light range (~2.77 eV). These results suggest that α-FeC2O4∙2H2O can be synthesized using an organic dicarboxylic acid and iron-rich, widely available, low-cost mineral precursors. In addition, the as-prepared α-FeC2O4∙2H2O could be further optimized and tested for catalytic and visible light photocatalytic applications.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Alpha Ferrous Oxalate Dihydrate from Ferrotitaniferous Mineral Sands via Hot Pressurized Aqueous Oxalic Acid: Kinetics and Characterization\",\"authors\":\"Carla S. Valdivieso-Ramírez, Salomé Galeas, Marleny D. A. Saldaña, Patricia I. Pontón, Víctor H. Guerrero, Karla Vizuete, Alexis Debut, Bojan A. Marinkovic\",\"doi\":\"10.3390/min14090891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferrous oxalate dihydrate is a versatile organic mineral with applications across fields. However, little is known about the feasibility of its synthesis directly from iron-bearing minerals using binary subcritical water (sCW) systems and its associated kinetics. In this study, the sCW+oxalic acid system at either 115 °C or 135 °C was investigated as a reaction medium for ferrous oxalate dihydrate (α-FeC2O4∙2H2O) synthesis, starting from ferrotitaniferous sands. The kinetics of the synthesis reaction were studied, and the physicochemical characterization of the as-synthetized ferrous oxalates was performed. Overall, the sCW synthesis was temperature-dependent, following second-order reaction kinetics according to the proposed precipitation pathway. A high reaction rate constant, significantly high yields (up to 89%), and reduced reaction times (2–8 h) were evident at 135 °C. The as-synthetized product corresponded to the monoclinic α-FeC2O4∙2H2O, showed relatively high specific surface areas (from 31.9 to 33.7 m2∙g−1), and exhibited band gap energies within the visible light range (~2.77 eV). These results suggest that α-FeC2O4∙2H2O can be synthesized using an organic dicarboxylic acid and iron-rich, widely available, low-cost mineral precursors. In addition, the as-prepared α-FeC2O4∙2H2O could be further optimized and tested for catalytic and visible light photocatalytic applications.\",\"PeriodicalId\":18601,\"journal\":{\"name\":\"Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/min14090891\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090891","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

草酸亚铁二水合物是一种用途广泛的有机矿物,可应用于各个领域。然而,人们对利用二元亚临界水(sCW)体系直接从含铁矿物合成草酸亚铁的可行性及其相关动力学知之甚少。在本研究中,研究了在 115 ℃ 或 135 ℃ 下将 sCW+ 草酸体系作为反应介质,从铁钛铁矿砂中合成二水草酸亚铁(α-FeC2O4∙2H2O)。研究了合成反应的动力学,并对合成的草酸亚铁进行了物理化学表征。总的来说,草酸亚铁的合成与温度有关,根据所提出的沉淀途径,其反应动力学为二阶反应动力学。135 °C 时反应速率常数高,产率显著提高(高达 89%),反应时间缩短(2-8 h)。合成产物为单斜α-FeC2O4∙2H2O,显示出相对较高的比表面积(从 31.9 到 33.7 m2∙g-1),并在可见光范围内显示出带隙能(~2.77 eV)。这些结果表明,α-FeC2O4∙2H2O 可以使用有机二羧酸和富铁、广泛存在且成本低廉的矿物前驱体合成。此外,制备的 α-FeC2O4∙2H2O 可进一步优化并测试其催化和可见光光催化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Alpha Ferrous Oxalate Dihydrate from Ferrotitaniferous Mineral Sands via Hot Pressurized Aqueous Oxalic Acid: Kinetics and Characterization
Ferrous oxalate dihydrate is a versatile organic mineral with applications across fields. However, little is known about the feasibility of its synthesis directly from iron-bearing minerals using binary subcritical water (sCW) systems and its associated kinetics. In this study, the sCW+oxalic acid system at either 115 °C or 135 °C was investigated as a reaction medium for ferrous oxalate dihydrate (α-FeC2O4∙2H2O) synthesis, starting from ferrotitaniferous sands. The kinetics of the synthesis reaction were studied, and the physicochemical characterization of the as-synthetized ferrous oxalates was performed. Overall, the sCW synthesis was temperature-dependent, following second-order reaction kinetics according to the proposed precipitation pathway. A high reaction rate constant, significantly high yields (up to 89%), and reduced reaction times (2–8 h) were evident at 135 °C. The as-synthetized product corresponded to the monoclinic α-FeC2O4∙2H2O, showed relatively high specific surface areas (from 31.9 to 33.7 m2∙g−1), and exhibited band gap energies within the visible light range (~2.77 eV). These results suggest that α-FeC2O4∙2H2O can be synthesized using an organic dicarboxylic acid and iron-rich, widely available, low-cost mineral precursors. In addition, the as-prepared α-FeC2O4∙2H2O could be further optimized and tested for catalytic and visible light photocatalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals
Minerals MINERALOGY-MINING & MINERAL PROCESSING
CiteScore
4.10
自引率
20.00%
发文量
1351
审稿时长
19.04 days
期刊介绍: Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信