测量数据系统与 Orlicz 的增长

IF 1 3区 数学 Q1 MATHEMATICS
Iwona Chlebicka, Yeonghun Youn, Anna Zatorska-Goldstein
{"title":"测量数据系统与 Orlicz 的增长","authors":"Iwona Chlebicka, Yeonghun Youn, Anna Zatorska-Goldstein","doi":"10.1007/s10231-024-01489-1","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of very weak solutions to a system </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll}-{\\pmb {\\textsf{div}}}{{\\mathcal {A}}}(x,{D{\\pmb {\\textsf{u}}}})=\\pmb {\\mathsf {\\mu }}\\quad \\text {in }\\ \\Omega ,\\\\ \\pmb {\\textsf{u}}=0\\quad \\text {on }\\ \\partial \\Omega \\end{array}\\right. } \\end{aligned}$$</span><p>with a datum <span>\\({\\pmb {\\mathsf {\\mu }}}\\)</span> being a vector-valued bounded Radon measure and <span>\\({{\\mathcal {A}}}:\\Omega \\times {{\\mathbb {R}}^{n\\times m}}\\rightarrow {{\\mathbb {R}}^{n\\times m}}\\)</span> having measurable dependence on the spacial variable and Orlicz growth with respect to the second variable. We are <i>not</i> restricted to the superquadratic case. For the solutions and their gradients we provide regularity estimates in the generalized Marcinkiewicz scale. In addition, we show a precise sufficient condition for the solution to be a Sobolev function.\n</p>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"70 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure data systems with Orlicz growth\",\"authors\":\"Iwona Chlebicka, Yeonghun Youn, Anna Zatorska-Goldstein\",\"doi\":\"10.1007/s10231-024-01489-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence of very weak solutions to a system </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll}-{\\\\pmb {\\\\textsf{div}}}{{\\\\mathcal {A}}}(x,{D{\\\\pmb {\\\\textsf{u}}}})=\\\\pmb {\\\\mathsf {\\\\mu }}\\\\quad \\\\text {in }\\\\ \\\\Omega ,\\\\\\\\ \\\\pmb {\\\\textsf{u}}=0\\\\quad \\\\text {on }\\\\ \\\\partial \\\\Omega \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>with a datum <span>\\\\({\\\\pmb {\\\\mathsf {\\\\mu }}}\\\\)</span> being a vector-valued bounded Radon measure and <span>\\\\({{\\\\mathcal {A}}}:\\\\Omega \\\\times {{\\\\mathbb {R}}^{n\\\\times m}}\\\\rightarrow {{\\\\mathbb {R}}^{n\\\\times m}}\\\\)</span> having measurable dependence on the spacial variable and Orlicz growth with respect to the second variable. We are <i>not</i> restricted to the superquadratic case. For the solutions and their gradients we provide regularity estimates in the generalized Marcinkiewicz scale. In addition, we show a precise sufficient condition for the solution to be a Sobolev function.\\n</p>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10231-024-01489-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10231-024-01489-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了系统 $$\begin{aligned} {\left\{ \begin{array}{ll}-{{pmb {\textsf{div}}}{{\mathcal {A}}(x.) 的极弱解的存在性、{D{pmb {\textsf{u}}}})=\pmb {\mathsf {\mu }}(四边形)text { in }\Omega ,(\ pmb {\textsf{u}}=0 (四边形)text { on }\partial\Omega\end{array}\right.}\end{aligned}$$with a datum \({\pmb {\mathsf {\mu }}}\) being a vector-valued bounded Radon measure and \({\mathcal {A}}:\Omega \times {{\mathbb {R}}^{n\times m}}\rightarrow {{\mathbb {R}}^{n\times m}}\) 具有对空间变量的可度量依赖性以及相对于第二个变量的奥立兹增长。我们并不局限于超二次情况。对于解及其梯度,我们提供了广义马尔钦凯维奇尺度下的正则性估计。此外,我们还展示了解为索波列函数的精确充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measure data systems with Orlicz growth

We study the existence of very weak solutions to a system

$$\begin{aligned} {\left\{ \begin{array}{ll}-{\pmb {\textsf{div}}}{{\mathcal {A}}}(x,{D{\pmb {\textsf{u}}}})=\pmb {\mathsf {\mu }}\quad \text {in }\ \Omega ,\\ \pmb {\textsf{u}}=0\quad \text {on }\ \partial \Omega \end{array}\right. } \end{aligned}$$

with a datum \({\pmb {\mathsf {\mu }}}\) being a vector-valued bounded Radon measure and \({{\mathcal {A}}}:\Omega \times {{\mathbb {R}}^{n\times m}}\rightarrow {{\mathbb {R}}^{n\times m}}\) having measurable dependence on the spacial variable and Orlicz growth with respect to the second variable. We are not restricted to the superquadratic case. For the solutions and their gradients we provide regularity estimates in the generalized Marcinkiewicz scale. In addition, we show a precise sufficient condition for the solution to be a Sobolev function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信