时周期格尔方-希洛夫空间中的微分算子系统

IF 1 3区 数学 Q1 MATHEMATICS
Fernando de Ávila Silva, Marco Cappiello, Alexandre Kirilov
{"title":"时周期格尔方-希洛夫空间中的微分算子系统","authors":"Fernando de Ávila Silva, Marco Cappiello, Alexandre Kirilov","doi":"10.1007/s10231-024-01499-z","DOIUrl":null,"url":null,"abstract":"<p>This paper explores the global properties of time-independent systems of operators in the framework of time-periodic Gelfand–Shilov spaces. Our main results provide both necessary and sufficient conditions for global solvability and global hypoellipticity, based on analysis of the symbols of operators. We also present a class of time-dependent operators whose solvability and hypoellipticity are linked to the same properties of an associated time-independent system, albeit with a loss of regularity for temporal variables.</p>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems of differential operators in time-periodic Gelfand–Shilov spaces\",\"authors\":\"Fernando de Ávila Silva, Marco Cappiello, Alexandre Kirilov\",\"doi\":\"10.1007/s10231-024-01499-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper explores the global properties of time-independent systems of operators in the framework of time-periodic Gelfand–Shilov spaces. Our main results provide both necessary and sufficient conditions for global solvability and global hypoellipticity, based on analysis of the symbols of operators. We also present a class of time-dependent operators whose solvability and hypoellipticity are linked to the same properties of an associated time-independent system, albeit with a loss of regularity for temporal variables.</p>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10231-024-01499-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10231-024-01499-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在时间周期格尔方-希洛夫空间的框架内探讨了与时间无关的算子系统的全局性质。我们的主要结果基于对算子符号的分析,提供了全局可解性和全局次椭圆性的必要条件和充分条件。我们还提出了一类与时间相关的算子,它们的可解性和次椭圆性与相关的与时间无关系统的相同性质相关联,尽管失去了时间变量的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systems of differential operators in time-periodic Gelfand–Shilov spaces

This paper explores the global properties of time-independent systems of operators in the framework of time-periodic Gelfand–Shilov spaces. Our main results provide both necessary and sufficient conditions for global solvability and global hypoellipticity, based on analysis of the symbols of operators. We also present a class of time-dependent operators whose solvability and hypoellipticity are linked to the same properties of an associated time-independent system, albeit with a loss of regularity for temporal variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信