{"title":"用于有效治疗乳腺癌的叶酸受体靶向喜树碱负载型 PLGA 谷登素纳米粒子","authors":"Raja Rajeswari Rajeshkumar, Theivendren Panneerselvam, Parasuraman Pavadai, Sureshbabu Ram Kumar Pandian, Alagarsamy Santhana Krishna Kumar, Murugesan Sankaranarayan, Shanmugampillai Jeyarajaguru Kabilan, Selvaraj Kunjiappan","doi":"10.1007/s10924-024-03391-6","DOIUrl":null,"url":null,"abstract":"<p>The combination of natural and synthetic polymers for nanomedicine development had many advantages, including less toxicity, biocompatibility, prolonged circulation, higher stability, and ease of surface modification. Here, a novel folic acid-conjugated Camptothecin-loaded-poly (lactic-co-glycolic) acid-glutenin nanoparticles (FA-CPT-PLGA-Glu NPs) was fabricated to treat breast cancer. FA-CPT-PLGA-Glu NPs target breast cancer cells via upregulated folate receptors and delivered their toxic payloads without disrupting healthy cells. First, CPT-loaded PLGA NPs were created using a modified emulsification/evaporation technique. Second, Glu-based CPT-PLGA NPs were synthesized using a layer-by-layer assembly, and their physiochemical properties were validated. CPT encapsulation efficiency and loading capacity into PLGA-Glu NPs were 74.95 ± 1.34% and 4.78 ± 1.08%, respectively. CPT-PLGA-Glu NPs exhibited sustained and controlled release of loaded-CPT from NPs, and the highest content was released in an acidic environment (pH 5.3), which will be advantageous for cancer treatment. Later, FA-CPT-PLGA-Glu NPs were synthesized by simple conjugation chemistry. The fabricated FA-CPT-PLGA-Glu NPs were around 100 nm in size, with a spherical form and crystalline nature. FA-CPT-PLGA-Glu NPs show strong cytotoxicity activity, and its IC<sub>50</sub> value was 16.33 µg × mL<sup>− 1</sup> against breast cancer cell line (MCF-7). This folate-receptor-targeted NPs are more effectively internalized into MCF-7 cells, causing ROS generation, cell growth inhibition, and apoptosis. The activity of caspase-3 and − 9 causes MCF-7 cells apoptosis by internalized CPT. Further, internalized CPT induces potential loss of mitochondrial transmembrane and damages the nuclear integrity of the cancer cells. These results showed that the FA-CPT-PLGA-Glu NPs target upregulated folate receptors on the surface of MCF-7 cells.</p><p>.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Folate Receptor-Targeted Camptothecin-Loaded PLGA-Glutenin Nanoparticles for Effective Breast cancer Treatment\",\"authors\":\"Raja Rajeswari Rajeshkumar, Theivendren Panneerselvam, Parasuraman Pavadai, Sureshbabu Ram Kumar Pandian, Alagarsamy Santhana Krishna Kumar, Murugesan Sankaranarayan, Shanmugampillai Jeyarajaguru Kabilan, Selvaraj Kunjiappan\",\"doi\":\"10.1007/s10924-024-03391-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The combination of natural and synthetic polymers for nanomedicine development had many advantages, including less toxicity, biocompatibility, prolonged circulation, higher stability, and ease of surface modification. Here, a novel folic acid-conjugated Camptothecin-loaded-poly (lactic-co-glycolic) acid-glutenin nanoparticles (FA-CPT-PLGA-Glu NPs) was fabricated to treat breast cancer. FA-CPT-PLGA-Glu NPs target breast cancer cells via upregulated folate receptors and delivered their toxic payloads without disrupting healthy cells. First, CPT-loaded PLGA NPs were created using a modified emulsification/evaporation technique. Second, Glu-based CPT-PLGA NPs were synthesized using a layer-by-layer assembly, and their physiochemical properties were validated. CPT encapsulation efficiency and loading capacity into PLGA-Glu NPs were 74.95 ± 1.34% and 4.78 ± 1.08%, respectively. CPT-PLGA-Glu NPs exhibited sustained and controlled release of loaded-CPT from NPs, and the highest content was released in an acidic environment (pH 5.3), which will be advantageous for cancer treatment. Later, FA-CPT-PLGA-Glu NPs were synthesized by simple conjugation chemistry. The fabricated FA-CPT-PLGA-Glu NPs were around 100 nm in size, with a spherical form and crystalline nature. FA-CPT-PLGA-Glu NPs show strong cytotoxicity activity, and its IC<sub>50</sub> value was 16.33 µg × mL<sup>− 1</sup> against breast cancer cell line (MCF-7). This folate-receptor-targeted NPs are more effectively internalized into MCF-7 cells, causing ROS generation, cell growth inhibition, and apoptosis. The activity of caspase-3 and − 9 causes MCF-7 cells apoptosis by internalized CPT. Further, internalized CPT induces potential loss of mitochondrial transmembrane and damages the nuclear integrity of the cancer cells. These results showed that the FA-CPT-PLGA-Glu NPs target upregulated folate receptors on the surface of MCF-7 cells.</p><p>.</p>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10924-024-03391-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10924-024-03391-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Folate Receptor-Targeted Camptothecin-Loaded PLGA-Glutenin Nanoparticles for Effective Breast cancer Treatment
The combination of natural and synthetic polymers for nanomedicine development had many advantages, including less toxicity, biocompatibility, prolonged circulation, higher stability, and ease of surface modification. Here, a novel folic acid-conjugated Camptothecin-loaded-poly (lactic-co-glycolic) acid-glutenin nanoparticles (FA-CPT-PLGA-Glu NPs) was fabricated to treat breast cancer. FA-CPT-PLGA-Glu NPs target breast cancer cells via upregulated folate receptors and delivered their toxic payloads without disrupting healthy cells. First, CPT-loaded PLGA NPs were created using a modified emulsification/evaporation technique. Second, Glu-based CPT-PLGA NPs were synthesized using a layer-by-layer assembly, and their physiochemical properties were validated. CPT encapsulation efficiency and loading capacity into PLGA-Glu NPs were 74.95 ± 1.34% and 4.78 ± 1.08%, respectively. CPT-PLGA-Glu NPs exhibited sustained and controlled release of loaded-CPT from NPs, and the highest content was released in an acidic environment (pH 5.3), which will be advantageous for cancer treatment. Later, FA-CPT-PLGA-Glu NPs were synthesized by simple conjugation chemistry. The fabricated FA-CPT-PLGA-Glu NPs were around 100 nm in size, with a spherical form and crystalline nature. FA-CPT-PLGA-Glu NPs show strong cytotoxicity activity, and its IC50 value was 16.33 µg × mL− 1 against breast cancer cell line (MCF-7). This folate-receptor-targeted NPs are more effectively internalized into MCF-7 cells, causing ROS generation, cell growth inhibition, and apoptosis. The activity of caspase-3 and − 9 causes MCF-7 cells apoptosis by internalized CPT. Further, internalized CPT induces potential loss of mitochondrial transmembrane and damages the nuclear integrity of the cancer cells. These results showed that the FA-CPT-PLGA-Glu NPs target upregulated folate receptors on the surface of MCF-7 cells.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.