N. V. Vasyunina, I. V. Dubova, K. E. Druzhinin, T. R. Gilmanshina
{"title":"赤泥的火法冶金加工","authors":"N. V. Vasyunina, I. V. Dubova, K. E. Druzhinin, T. R. Gilmanshina","doi":"10.1007/s11015-024-01767-6","DOIUrl":null,"url":null,"abstract":"<div><p>High-iron Bayer red mud, containing over 30% of iron, is considered low-grade iron ore. Due to the global iron deficiency in recent decades, the effective utilization of the iron contained in high-iron red mud has received increasing attention. In this work, a technological scheme was developed for the extraction of iron into cast iron from red mud by smelting reduction, followed by rapid cooling to separate the metal from the slag. The influence of various experimental parameters, including temperature, basicity, and reduction time, on the recovery of iron from red mud was studied in detail. The results demonstrated that the separation of metal from slag was complete. The maximum extraction of iron into cast iron was obtained at a temperature of 1450 °C, with approximately 88.5% achieved in the absence of sodium carbonate and 91.5% with sodium carbonate. The optimal experimental result is of great importance for the large-scale and highly efficient recycling of red mud.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 4","pages":"631 - 639"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrometallurgical processing of red mud\",\"authors\":\"N. V. Vasyunina, I. V. Dubova, K. E. Druzhinin, T. R. Gilmanshina\",\"doi\":\"10.1007/s11015-024-01767-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-iron Bayer red mud, containing over 30% of iron, is considered low-grade iron ore. Due to the global iron deficiency in recent decades, the effective utilization of the iron contained in high-iron red mud has received increasing attention. In this work, a technological scheme was developed for the extraction of iron into cast iron from red mud by smelting reduction, followed by rapid cooling to separate the metal from the slag. The influence of various experimental parameters, including temperature, basicity, and reduction time, on the recovery of iron from red mud was studied in detail. The results demonstrated that the separation of metal from slag was complete. The maximum extraction of iron into cast iron was obtained at a temperature of 1450 °C, with approximately 88.5% achieved in the absence of sodium carbonate and 91.5% with sodium carbonate. The optimal experimental result is of great importance for the large-scale and highly efficient recycling of red mud.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 4\",\"pages\":\"631 - 639\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01767-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01767-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
含铁量超过 30% 的拜尔高铁赤泥被视为低品位铁矿石。近几十年来,由于全球缺铁,如何有效利用高铁赤泥中的铁越来越受到重视。在这项工作中,开发了一种技术方案,通过熔炼还原法从赤泥中提取铁制成铸铁,然后快速冷却,将金属从熔渣中分离出来。详细研究了温度、碱性和还原时间等各种实验参数对从赤泥中回收铁的影响。结果表明,金属与渣的分离是完全的。在温度为 1450 °C 时,铸铁中铁的萃取率最高,在不使用碳酸钠的情况下,萃取率约为 88.5%,而在使用碳酸钠的情况下,萃取率约为 91.5%。这一最佳实验结果对于大规模、高效地回收赤泥具有重要意义。
High-iron Bayer red mud, containing over 30% of iron, is considered low-grade iron ore. Due to the global iron deficiency in recent decades, the effective utilization of the iron contained in high-iron red mud has received increasing attention. In this work, a technological scheme was developed for the extraction of iron into cast iron from red mud by smelting reduction, followed by rapid cooling to separate the metal from the slag. The influence of various experimental parameters, including temperature, basicity, and reduction time, on the recovery of iron from red mud was studied in detail. The results demonstrated that the separation of metal from slag was complete. The maximum extraction of iron into cast iron was obtained at a temperature of 1450 °C, with approximately 88.5% achieved in the absence of sodium carbonate and 91.5% with sodium carbonate. The optimal experimental result is of great importance for the large-scale and highly efficient recycling of red mud.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).