利用机器学习方法改进镀锌轧辊生产技术:新利佩茨克钢铁公司(NLMK)连续热浸镀锌装置(CHGU-1)案例研究

IF 0.8 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Yu. S. Toroptseva, A. V. Kuznetsov, A. L. Kotikov
{"title":"利用机器学习方法改进镀锌轧辊生产技术:新利佩茨克钢铁公司(NLMK)连续热浸镀锌装置(CHGU-1)案例研究","authors":"Yu. S. Toroptseva,&nbsp;A. V. Kuznetsov,&nbsp;A. L. Kotikov","doi":"10.1007/s11015-024-01761-y","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes the existing technologies and challenges associated with galvanized metal production at the Novolipetsk Steel (NLMK) plant. Possible ways to improve the process using machine-learning tools are proposed.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 4","pages":"582 - 587"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the galvanized roll stock production technology by using machine learning methods: a case study of the novolipetsk steel (NLMK) continuous hot-dip galvanizing unit (CHGU-1)\",\"authors\":\"Yu. S. Toroptseva,&nbsp;A. V. Kuznetsov,&nbsp;A. L. Kotikov\",\"doi\":\"10.1007/s11015-024-01761-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper describes the existing technologies and challenges associated with galvanized metal production at the Novolipetsk Steel (NLMK) plant. Possible ways to improve the process using machine-learning tools are proposed.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 4\",\"pages\":\"582 - 587\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01761-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01761-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了新利佩茨克钢铁公司(NLMK)镀锌金属生产的现有技术和相关挑战。并提出了利用机器学习工具改进工艺的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving the galvanized roll stock production technology by using machine learning methods: a case study of the novolipetsk steel (NLMK) continuous hot-dip galvanizing unit (CHGU-1)

Improving the galvanized roll stock production technology by using machine learning methods: a case study of the novolipetsk steel (NLMK) continuous hot-dip galvanizing unit (CHGU-1)

The paper describes the existing technologies and challenges associated with galvanized metal production at the Novolipetsk Steel (NLMK) plant. Possible ways to improve the process using machine-learning tools are proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgist
Metallurgist 工程技术-冶金工程
CiteScore
1.50
自引率
44.40%
发文量
151
审稿时长
4-8 weeks
期刊介绍: Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956. Basic topics covered include: State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining; Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment; Automation and control; Protection of labor; Protection of the environment; Resources and energy saving; Quality and certification; History of metallurgy; Inventions (patents).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信