回火和再时效对 Al-Zn-Mg-Cu-Zr-Er 合金微观结构和性能的影响

IF 0.8 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
M. V. Glavatskikh, L. E. Gorlov, R. Yu. Barkov, A. V. Pozdniakov
{"title":"回火和再时效对 Al-Zn-Mg-Cu-Zr-Er 合金微观结构和性能的影响","authors":"M. V. Glavatskikh,&nbsp;L. E. Gorlov,&nbsp;R. Yu. Barkov,&nbsp;A. V. Pozdniakov","doi":"10.1007/s11015-024-01776-5","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigated the effect of retrogression and re-aging (RRA) on the structure and properties of the new Al–3.5Zn–3.5Mg–3.5Cu–1.6Er–0.2Zr–0.2Cr alloy through the use of scanning electron microscopy, thermodynamic calculations, hardness tests, current density, and corrosion potential. During the crystallization process, chromium is distributed between primary intermetallic compounds with an approximate composition of (Al,Zn)<sub>79.8</sub>Mg<sub>4.7</sub>Cu<sub>3</sub>Cr<sub>5.5</sub>(Er,Ti)<sub>7</sub>, with a size of approximately 10 μm and an aluminum solid solution. Following two-stage homogenization heat treatment, the Al<sub>8</sub>Cu<sub>4</sub>Er and Mg<sub>2</sub>Si phases exhibit minimal morphological changes, with the θ‑phase (Al<sub>2</sub>Cu) being completely dissolved and the T‑phase (Al,Zn,Mg,Cu) transformed into the S‑phase (Al<sub>2</sub>CuMg). Thermodynamic calculations indicate that the alloy should also contain the Al<sub>3</sub>Zr and Al<sub>45</sub>Cr<sub>7</sub> phases, which precipitate from the supersaturated solid solution during homogenization. Age hardening in the temperature range of 150–210 °C occurs due to the release of metastable modifications of the T‑phase. The combination of hardness (140 <i>HV</i>) and corrosion resistance (minimum corrosion current density 1 μA/cm<sup>2</sup>) is optimized by retrogression and re-aging.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 5","pages":"702 - 710"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of retrograssion and re-aging on microstructure and properties of Al–Zn–Mg–Cu–Zr–Er alloy\",\"authors\":\"M. V. Glavatskikh,&nbsp;L. E. Gorlov,&nbsp;R. Yu. Barkov,&nbsp;A. V. Pozdniakov\",\"doi\":\"10.1007/s11015-024-01776-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study investigated the effect of retrogression and re-aging (RRA) on the structure and properties of the new Al–3.5Zn–3.5Mg–3.5Cu–1.6Er–0.2Zr–0.2Cr alloy through the use of scanning electron microscopy, thermodynamic calculations, hardness tests, current density, and corrosion potential. During the crystallization process, chromium is distributed between primary intermetallic compounds with an approximate composition of (Al,Zn)<sub>79.8</sub>Mg<sub>4.7</sub>Cu<sub>3</sub>Cr<sub>5.5</sub>(Er,Ti)<sub>7</sub>, with a size of approximately 10 μm and an aluminum solid solution. Following two-stage homogenization heat treatment, the Al<sub>8</sub>Cu<sub>4</sub>Er and Mg<sub>2</sub>Si phases exhibit minimal morphological changes, with the θ‑phase (Al<sub>2</sub>Cu) being completely dissolved and the T‑phase (Al,Zn,Mg,Cu) transformed into the S‑phase (Al<sub>2</sub>CuMg). Thermodynamic calculations indicate that the alloy should also contain the Al<sub>3</sub>Zr and Al<sub>45</sub>Cr<sub>7</sub> phases, which precipitate from the supersaturated solid solution during homogenization. Age hardening in the temperature range of 150–210 °C occurs due to the release of metastable modifications of the T‑phase. The combination of hardness (140 <i>HV</i>) and corrosion resistance (minimum corrosion current density 1 μA/cm<sup>2</sup>) is optimized by retrogression and re-aging.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 5\",\"pages\":\"702 - 710\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01776-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01776-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

该研究通过使用扫描电子显微镜、热力学计算、硬度测试、电流密度和腐蚀电位,研究了逆行和再时效(RRA)对新型 Al-3.5Zn-3.5Mg-3.5Cu-1.6Er-0.2Zr-0.2Cr 合金的结构和性能的影响。在结晶过程中,铬分布在初级金属间化合物之间,初级金属间化合物的成分大致为(Al,Zn)79.8Mg4.7Cu3Cr5.5(Er,Ti)7,尺寸约为 10 μm,铝为固溶体。经过两级均质热处理后,Al8Cu4Er 和 Mg2Si 相的形态变化极小,θ 相(Al2Cu)完全溶解,T 相(Al,Zn,Mg,Cu)转变为 S 相(Al2CuMg)。热力学计算表明,合金中还应含有 Al3Zr 和 Al45Cr7 相,它们是在均匀化过程中从过饱和固溶体中析出的。在 150-210 °C的温度范围内,由于 T 相的蜕变释放,合金会发生时效硬化。硬度(140 HV)和耐腐蚀性(最小腐蚀电流密度 1 μA/cm2)的组合通过逆变和再时效进行了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of retrograssion and re-aging on microstructure and properties of Al–Zn–Mg–Cu–Zr–Er alloy

Effect of retrograssion and re-aging on microstructure and properties of Al–Zn–Mg–Cu–Zr–Er alloy

The study investigated the effect of retrogression and re-aging (RRA) on the structure and properties of the new Al–3.5Zn–3.5Mg–3.5Cu–1.6Er–0.2Zr–0.2Cr alloy through the use of scanning electron microscopy, thermodynamic calculations, hardness tests, current density, and corrosion potential. During the crystallization process, chromium is distributed between primary intermetallic compounds with an approximate composition of (Al,Zn)79.8Mg4.7Cu3Cr5.5(Er,Ti)7, with a size of approximately 10 μm and an aluminum solid solution. Following two-stage homogenization heat treatment, the Al8Cu4Er and Mg2Si phases exhibit minimal morphological changes, with the θ‑phase (Al2Cu) being completely dissolved and the T‑phase (Al,Zn,Mg,Cu) transformed into the S‑phase (Al2CuMg). Thermodynamic calculations indicate that the alloy should also contain the Al3Zr and Al45Cr7 phases, which precipitate from the supersaturated solid solution during homogenization. Age hardening in the temperature range of 150–210 °C occurs due to the release of metastable modifications of the T‑phase. The combination of hardness (140 HV) and corrosion resistance (minimum corrosion current density 1 μA/cm2) is optimized by retrogression and re-aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgist
Metallurgist 工程技术-冶金工程
CiteScore
1.50
自引率
44.40%
发文量
151
审稿时长
4-8 weeks
期刊介绍: Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956. Basic topics covered include: State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining; Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment; Automation and control; Protection of labor; Protection of the environment; Resources and energy saving; Quality and certification; History of metallurgy; Inventions (patents).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信