{"title":"论某些实双二次域的 $$\\mathbb{Z}_{2}$ 扩展的岩泽模块结构","authors":"A. El Mahi","doi":"10.1007/s10474-024-01459-2","DOIUrl":null,"url":null,"abstract":"<div><p>For an infinite family of real biquadratic fields <i>k</i> we give the structure of the Iwasawa module <span>\\(X=X(k_{\\infty})\\)</span> of the <span>\\(\\mathbb{Z}_{2}\\)</span>-extension of <i>k</i>. For these fields, we obtain that <span>\\(\\lambda=\\mu=0 \\mbox{ and }\\nu=2\\)</span>. where <span>\\(\\lambda\\)</span>, <span>\\(\\mu\\)</span> and <span>\\(\\nu\\)</span> are the Iwasawa invariants of the cyclotomic <span>\\(\\mathbb{Z}_{2}\\)</span>-extension of <i>k</i></p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 1","pages":"49 - 61"},"PeriodicalIF":0.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the structure of the Iwasawa module for \\\\(\\\\mathbb{Z}_{2}\\\\)-extensions of certain real biquadratic fields\",\"authors\":\"A. El Mahi\",\"doi\":\"10.1007/s10474-024-01459-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an infinite family of real biquadratic fields <i>k</i> we give the structure of the Iwasawa module <span>\\\\(X=X(k_{\\\\infty})\\\\)</span> of the <span>\\\\(\\\\mathbb{Z}_{2}\\\\)</span>-extension of <i>k</i>. For these fields, we obtain that <span>\\\\(\\\\lambda=\\\\mu=0 \\\\mbox{ and }\\\\nu=2\\\\)</span>. where <span>\\\\(\\\\lambda\\\\)</span>, <span>\\\\(\\\\mu\\\\)</span> and <span>\\\\(\\\\nu\\\\)</span> are the Iwasawa invariants of the cyclotomic <span>\\\\(\\\\mathbb{Z}_{2}\\\\)</span>-extension of <i>k</i></p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"174 1\",\"pages\":\"49 - 61\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01459-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01459-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于实双二次型场 k 的无穷族,我们给出了 k 的 \(\mathbb{Z}_{2}\) 扩展的岩泽模块 \(X=X(k_{\infty})\) 的结构。对于这些场,我们可以得到(\lambda=\mu=0 \mbox{ and }\nu=2\). 其中\(\lambda\)\(\mu\)和\(\nu\)是k的环状\(\mathbb{Z}_{2}\)-扩展的岩泽不变式。
On the structure of the Iwasawa module for \(\mathbb{Z}_{2}\)-extensions of certain real biquadratic fields
For an infinite family of real biquadratic fields k we give the structure of the Iwasawa module \(X=X(k_{\infty})\) of the \(\mathbb{Z}_{2}\)-extension of k. For these fields, we obtain that \(\lambda=\mu=0 \mbox{ and }\nu=2\). where \(\lambda\), \(\mu\) and \(\nu\) are the Iwasawa invariants of the cyclotomic \(\mathbb{Z}_{2}\)-extension of k
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.