{"title":"利用热固性硅酸盐(SHS)制造基于火成岩的基质","authors":"T. V. Barinova, V. Yu. Barinov, V. N. Semenova","doi":"10.3103/S106138622470016X","DOIUrl":null,"url":null,"abstract":"<p>Matrix based on pyrochlore Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> for immobilization of high-level radioactive waste was prepared via SHS process. The phase composition and structure of the synthesized matrices were characterized. The influence of aluminum additive and composition/amount of gases emitted during combustion on the porosity of the matrices was studied.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"209 - 213"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrochlore-Based Matrix by SHS\",\"authors\":\"T. V. Barinova, V. Yu. Barinov, V. N. Semenova\",\"doi\":\"10.3103/S106138622470016X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Matrix based on pyrochlore Y<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> for immobilization of high-level radioactive waste was prepared via SHS process. The phase composition and structure of the synthesized matrices were characterized. The influence of aluminum additive and composition/amount of gases emitted during combustion on the porosity of the matrices was studied.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"33 3\",\"pages\":\"209 - 213\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S106138622470016X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106138622470016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Matrix based on pyrochlore Y2Ti2O7 for immobilization of high-level radioactive waste was prepared via SHS process. The phase composition and structure of the synthesized matrices were characterized. The influence of aluminum additive and composition/amount of gases emitted during combustion on the porosity of the matrices was studied.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.