从第一原理看影响极性半导体氦量子蒸发的因素

Lakshay Dheer, Liang Z. Tan, S. A. Lyon, Thomas Schenkel, Sinéad M. Griffin
{"title":"从第一原理看影响极性半导体氦量子蒸发的因素","authors":"Lakshay Dheer, Liang Z. Tan, S. A. Lyon, Thomas Schenkel, Sinéad M. Griffin","doi":"arxiv-2409.03857","DOIUrl":null,"url":null,"abstract":"While there is much indirect evidence for the existence of dark matter (DM),\nto date it has evaded detection. Current efforts focus on DM masses over\n$\\sim$GeV -- to push the sensitivity of DM searches to lower masses, new DM\ntargets and detection schemes are needed. In this work, we focus on the latter\n- a novel detection scheme recently proposed to detect ~10-100 meV phonons in\npolar target materials. Previous work showed that well-motivated models of DM\ncan interact with polar semiconductors to produce an athermal population of\nphonons. This new sensing scheme proposes that these phonons then facilitate\nquantum evaporation of $^3$He from a van der Waals film deposited on the target\nmaterial. However, a fundamental understanding of the underlying process is\nstill unclear, with several uncertainties related to the precise rate of\nevaporation and how it can be controlled. In this work, we use \\textit{ab\ninitio} density functional theory (DFT) calculations to compare the adsorption\nenergies of helium atoms on a polar target material, sodium iodide (NaI), to\nunderstand the underlying evaporation physics. We explore the role of surface\ntermination, monolayer coverage and elemental species on the rate of He\nevaporation from the target material. Using this, we discuss the optimal target\nfeatures for He-evaporation experiments and their range of tunability through\nchemical and physical modifications such as applied field and surface\ntermination.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors influencing quantum evaporation of helium from polar semiconductors from first principles\",\"authors\":\"Lakshay Dheer, Liang Z. Tan, S. A. Lyon, Thomas Schenkel, Sinéad M. Griffin\",\"doi\":\"arxiv-2409.03857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While there is much indirect evidence for the existence of dark matter (DM),\\nto date it has evaded detection. Current efforts focus on DM masses over\\n$\\\\sim$GeV -- to push the sensitivity of DM searches to lower masses, new DM\\ntargets and detection schemes are needed. In this work, we focus on the latter\\n- a novel detection scheme recently proposed to detect ~10-100 meV phonons in\\npolar target materials. Previous work showed that well-motivated models of DM\\ncan interact with polar semiconductors to produce an athermal population of\\nphonons. This new sensing scheme proposes that these phonons then facilitate\\nquantum evaporation of $^3$He from a van der Waals film deposited on the target\\nmaterial. However, a fundamental understanding of the underlying process is\\nstill unclear, with several uncertainties related to the precise rate of\\nevaporation and how it can be controlled. In this work, we use \\\\textit{ab\\ninitio} density functional theory (DFT) calculations to compare the adsorption\\nenergies of helium atoms on a polar target material, sodium iodide (NaI), to\\nunderstand the underlying evaporation physics. We explore the role of surface\\ntermination, monolayer coverage and elemental species on the rate of He\\nevaporation from the target material. Using this, we discuss the optimal target\\nfeatures for He-evaporation experiments and their range of tunability through\\nchemical and physical modifications such as applied field and surface\\ntermination.\",\"PeriodicalId\":501374,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Detectors\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Detectors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然有许多间接证据表明暗物质(DM)的存在,但迄今为止它仍未被探测到。目前的工作主要集中在质量超过GeV的暗物质上--要把暗物质搜索的灵敏度提高到更低的质量,就需要新的暗物质目标和探测方案。在这项工作中,我们的重点是后者--最近提出的一种新型探测方案,用于探测极性目标材料中的~10-100 meV声子。以前的工作表明,动机良好的 DM 模型可以与极性半导体相互作用,产生热声子群。这一新的传感方案提出,这些声子将促进^3$He从沉积在目标材料上的范德华膜中量子蒸发。然而,对这一基本过程的基本理解仍不清楚,与精确的蒸发率以及如何控制蒸发率有关的几个不确定因素也不清楚。在这项工作中,我们利用密度泛函理论(DFT)计算来比较氦原子在极性靶材料碘化钠(NaI)上的吸附能,从而了解基本的蒸发物理过程。我们探讨了表面确定性、单层覆盖率和元素种类对氦从目标材料蒸发速率的作用。据此,我们讨论了氦蒸发实验的最佳目标特征,以及通过化学和物理修饰(如外加场和表面决定)实现的可调范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factors influencing quantum evaporation of helium from polar semiconductors from first principles
While there is much indirect evidence for the existence of dark matter (DM), to date it has evaded detection. Current efforts focus on DM masses over $\sim$GeV -- to push the sensitivity of DM searches to lower masses, new DM targets and detection schemes are needed. In this work, we focus on the latter - a novel detection scheme recently proposed to detect ~10-100 meV phonons in polar target materials. Previous work showed that well-motivated models of DM can interact with polar semiconductors to produce an athermal population of phonons. This new sensing scheme proposes that these phonons then facilitate quantum evaporation of $^3$He from a van der Waals film deposited on the target material. However, a fundamental understanding of the underlying process is still unclear, with several uncertainties related to the precise rate of evaporation and how it can be controlled. In this work, we use \textit{ab initio} density functional theory (DFT) calculations to compare the adsorption energies of helium atoms on a polar target material, sodium iodide (NaI), to understand the underlying evaporation physics. We explore the role of surface termination, monolayer coverage and elemental species on the rate of He evaporation from the target material. Using this, we discuss the optimal target features for He-evaporation experiments and their range of tunability through chemical and physical modifications such as applied field and surface termination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信