{"title":"微缺陷对选择性激光熔化法生产的 CX 不锈钢机械性能的影响","authors":"Xiaojie Zhao, Kai Zhao, Yang Gao, Dongdong Wang","doi":"10.1007/s12540-024-01740-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a high-strength maraging stainless steel (CX stainless steel) was prepared using selective laser melting (SLM) technology. Solution aging was employed to enhance the microstructure and mechanical properties of the printed part. The heterogeneous microstructures of CX steel were studied, which mainly consisted of martensitic laths with high-density dislocations and numerous cellular substructures. Precipitation of NiAl with an average particle size of 12 nm and the occurrence of alumina inclusions with an average size of about 70 nm were observed. A high ultimate tensile strength of 1647 MPa, micro-hardness of 520 HV<sub>0.2</sub> and a good elongation of 8.9% was achieved for CX stainless steel. Moreover, the strengthening mechanism and crack propagation law are analyzed from the perspective of microdefects, such as fine grains, high density dislocations, cellular structure, nano-precipitates and inclusions.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 1","pages":"70 - 83"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Microdefect on Mechanical Behaviors of CX Stainless Steel Produced by Selective Laser Melting\",\"authors\":\"Xiaojie Zhao, Kai Zhao, Yang Gao, Dongdong Wang\",\"doi\":\"10.1007/s12540-024-01740-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a high-strength maraging stainless steel (CX stainless steel) was prepared using selective laser melting (SLM) technology. Solution aging was employed to enhance the microstructure and mechanical properties of the printed part. The heterogeneous microstructures of CX steel were studied, which mainly consisted of martensitic laths with high-density dislocations and numerous cellular substructures. Precipitation of NiAl with an average particle size of 12 nm and the occurrence of alumina inclusions with an average size of about 70 nm were observed. A high ultimate tensile strength of 1647 MPa, micro-hardness of 520 HV<sub>0.2</sub> and a good elongation of 8.9% was achieved for CX stainless steel. Moreover, the strengthening mechanism and crack propagation law are analyzed from the perspective of microdefects, such as fine grains, high density dislocations, cellular structure, nano-precipitates and inclusions.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"31 1\",\"pages\":\"70 - 83\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01740-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01740-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of Microdefect on Mechanical Behaviors of CX Stainless Steel Produced by Selective Laser Melting
In this study, a high-strength maraging stainless steel (CX stainless steel) was prepared using selective laser melting (SLM) technology. Solution aging was employed to enhance the microstructure and mechanical properties of the printed part. The heterogeneous microstructures of CX steel were studied, which mainly consisted of martensitic laths with high-density dislocations and numerous cellular substructures. Precipitation of NiAl with an average particle size of 12 nm and the occurrence of alumina inclusions with an average size of about 70 nm were observed. A high ultimate tensile strength of 1647 MPa, micro-hardness of 520 HV0.2 and a good elongation of 8.9% was achieved for CX stainless steel. Moreover, the strengthening mechanism and crack propagation law are analyzed from the perspective of microdefects, such as fine grains, high density dislocations, cellular structure, nano-precipitates and inclusions.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.