Xufeng Wang, Jun Zhou, Yuanzhuo Liu, Linjiang Chai, Yue Liu, Haiqin Zhang, Haiming Liu, Bin Tang, Xiangyi Xue, Jinshan Li
{"title":"冷皮尔格轧制过程中 Zr-Sn-Nb-Fe 合金管的微结构和纹理演变","authors":"Xufeng Wang, Jun Zhou, Yuanzhuo Liu, Linjiang Chai, Yue Liu, Haiqin Zhang, Haiming Liu, Bin Tang, Xiangyi Xue, Jinshan Li","doi":"10.1007/s12540-024-01799-2","DOIUrl":null,"url":null,"abstract":"<p>In this study, a cold-pilgered Zr alloy tube with the composition of Zr-1.0 wt%Sn-1.0 wt%Nb-0.3 wt%Fe was investigated. During the cold pilgering, the tube developed distinct microstructural and textural features at different positions (with varying internal/external diameters and wall thicknesses) due to their specific stress states and deformation amount. Microstructural and textural evolution during cold pilgering were analyzed by characterizing specimens (S0-S4) cut from typical tube positions mainly using electron channeling contrast imaging and electron backscatter diffraction techniques. Transmission electron microscopy was also utilized to reveal typical precipitates in the un-pilgered specimen (S0). Results indicate that at low/medium strains, there exist non-deformation grains with hard orientations in the pilgered tube specimens, leading to heterogeneous microstructures. With increasing strains, the tube specimens show continuously reduced grain sizes and increased kernel average misorientations along with higher fractions of low angle boundaries, resulting in enhanced microstructural homogeneity. During the pilgering, the texture of Zr-1.0Sn-1.0Nb-0.3Fe alloy tube gradually transforms from initial c//TD to c//RD, which changes back to the c//TD at high strains (>∼ 60%). In the meantime, the < 10–10>//AD component is initially weakened slightly but then significantly enhanced, while there is an opposite trend for that of the < 11–20>//AD component. According to the analysis of in-grain misorientation axes, the textural evolution during the pilgering results from the coordination of multiple slip systems and the pyramidal slip can be substantially activated at a high strain.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"185 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural and Textural Evolution of a Zr-Sn-Nb-Fe Alloy Tube During Cold Pilger Rolling\",\"authors\":\"Xufeng Wang, Jun Zhou, Yuanzhuo Liu, Linjiang Chai, Yue Liu, Haiqin Zhang, Haiming Liu, Bin Tang, Xiangyi Xue, Jinshan Li\",\"doi\":\"10.1007/s12540-024-01799-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a cold-pilgered Zr alloy tube with the composition of Zr-1.0 wt%Sn-1.0 wt%Nb-0.3 wt%Fe was investigated. During the cold pilgering, the tube developed distinct microstructural and textural features at different positions (with varying internal/external diameters and wall thicknesses) due to their specific stress states and deformation amount. Microstructural and textural evolution during cold pilgering were analyzed by characterizing specimens (S0-S4) cut from typical tube positions mainly using electron channeling contrast imaging and electron backscatter diffraction techniques. Transmission electron microscopy was also utilized to reveal typical precipitates in the un-pilgered specimen (S0). Results indicate that at low/medium strains, there exist non-deformation grains with hard orientations in the pilgered tube specimens, leading to heterogeneous microstructures. With increasing strains, the tube specimens show continuously reduced grain sizes and increased kernel average misorientations along with higher fractions of low angle boundaries, resulting in enhanced microstructural homogeneity. During the pilgering, the texture of Zr-1.0Sn-1.0Nb-0.3Fe alloy tube gradually transforms from initial c//TD to c//RD, which changes back to the c//TD at high strains (>∼ 60%). In the meantime, the < 10–10>//AD component is initially weakened slightly but then significantly enhanced, while there is an opposite trend for that of the < 11–20>//AD component. According to the analysis of in-grain misorientation axes, the textural evolution during the pilgering results from the coordination of multiple slip systems and the pyramidal slip can be substantially activated at a high strain.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12540-024-01799-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01799-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructural and Textural Evolution of a Zr-Sn-Nb-Fe Alloy Tube During Cold Pilger Rolling
In this study, a cold-pilgered Zr alloy tube with the composition of Zr-1.0 wt%Sn-1.0 wt%Nb-0.3 wt%Fe was investigated. During the cold pilgering, the tube developed distinct microstructural and textural features at different positions (with varying internal/external diameters and wall thicknesses) due to their specific stress states and deformation amount. Microstructural and textural evolution during cold pilgering were analyzed by characterizing specimens (S0-S4) cut from typical tube positions mainly using electron channeling contrast imaging and electron backscatter diffraction techniques. Transmission electron microscopy was also utilized to reveal typical precipitates in the un-pilgered specimen (S0). Results indicate that at low/medium strains, there exist non-deformation grains with hard orientations in the pilgered tube specimens, leading to heterogeneous microstructures. With increasing strains, the tube specimens show continuously reduced grain sizes and increased kernel average misorientations along with higher fractions of low angle boundaries, resulting in enhanced microstructural homogeneity. During the pilgering, the texture of Zr-1.0Sn-1.0Nb-0.3Fe alloy tube gradually transforms from initial c//TD to c//RD, which changes back to the c//TD at high strains (>∼ 60%). In the meantime, the < 10–10>//AD component is initially weakened slightly but then significantly enhanced, while there is an opposite trend for that of the < 11–20>//AD component. According to the analysis of in-grain misorientation axes, the textural evolution during the pilgering results from the coordination of multiple slip systems and the pyramidal slip can be substantially activated at a high strain.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.